• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

COMMAND AND CONTROL OF A CLUSTER OF SATELLITES

Zetocha, Paul 10 1900 (has links)
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada / There is an increasing desire in many organizations, including NASA and the DoD, to use constellations or fleets of autonomous spacecraft working together to accomplish complex mission objectives. At the Air Force Research Laboratory’s (AFRL) Space Vehicles Directorate we are investigating and developing architectures for commanding and controlling a cluster of cooperating satellites. For many space missions, large monolithic satellites are required to meet mission requirements. In many cases this results in costly satellites which are more complex, more susceptible to failure, and which have performance characteristics that are less than optimal due to realistic physical size limitations. Recently various organizations have begun to explore how distributed clusters of cooperating satellites can replace their larger monolithic counterparts resulting in an overall cost reduction, enhanced mission performance, and increased system fault tolerance. Large clusters of satellites flying in formation are required to have some level of on-board autonomy in order to: fly within specified tolerance levels; perform collision avoidance; address fault detection, isolation, and resolution (FDIR); share knowledge; and plan and schedule activities. In addition, from an operations standpoint, commanding and controlling a large cluster of satellites can be very burdensome for ground operators. At AFRL we are addressing these issues by development of an on-board Cluster Management system which will, in essence, provide the capability to treat a cluster of satellites as a single virtual satellite. A systems level approach is being taken, therefore from a ground perspective the ground control station must also be able to treat the cluster as a virtual satellite. [1] This paper will describe our Cluster Management system, which is the intelligent entity that is responsible for making cluster level decisions and which enables the satellite cluster to function as a virtual satellite. The cluster manager functionality can be broken down into the following five areas: • Command and control • Cluster data management • Formation flying • Fault management • On-board Planning This paper will contain a detailed description of the Cluster Manager architecture along with its various modules.
2

SATELLITE PAYLOAD CONTROL AND MONITORING USING PERSONAL COMPUTERS

Willis, James 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1998 / Town & Country Resort Hotel and Convention Center, San Diego, California / Universal acceptance of the Windows NT operating system has made utilization of the personal computer (PC) platform for critical space operations a reality. The software attributes of the operating system allow PC products to attain the reliability necessary for secure control of on-orbit assets. Not only is the software more reliable, it supports better networking interfaces at higher speeds. The software upgrades that the Microsoft Corporation generates on a regular basis allow PCs to offer capabilities previously available only with UNIX-based solutions. As technology matures, PCs will operate faster, offer more graphical user interfaces, and give customers a lower cost versus performance choice. These reasons, and others to be discussed further, clearly demonstrate that PCs will soon take their place at the forefront of mission-critical ground station applications.

Page generated in 0.0668 seconds