Spelling suggestions: "subject:"atellite edge computing"" "subject:"datellite edge computing""
1 |
Research on Dynamic Offloading Strategy of Satellite Edge Computing Based on Deep Reinforcement LearningGeng, Rui January 2021 (has links)
Nowadays more and more data is generated at the edge of the network, and people are beginning to consider decentralizing computing tasks to the edge of the network. The network architecture of edge computing is different from the traditional network architecture. Its distributed configuration can make up for some shortcomings of traditional networks, such as data congestion, increased delay, and limited capacity. With the continuous development of 5G technology, satellite communication networks are also facing many new business challenges. By using idle computing power and storage space on satellites and integrating edge computing technology into satellite communication networks, it will greatly improve satellite communication service quality, and enhance satellite task processing capabilities, thereby improving the satellite edge computing system performance. The primary problem that limits the computing performance of satellite edge networks is how to obtain a more effective dynamic service offloading strategy. To study this problem, this thesis monitors the status information satellite nodes in different periods, such as service load and distance to the ground, uses the Markov decision process to model the dynamic offloading problem of the satellite edge computing system, and finally obtains the service offloading strategies. The deployment plan is based on deep reinforcement learning algorithms. We mainly study the performance of the Deep Q-Network (DQN) algorithm and two improved DQN algorithms Double DQN (DDQN) and Dueling DQN (DuDQN) in different service request types and different system scenarios. Compared with existing service deployment algorithms, deep reinforcement learning algorithms take into account the long-term service quality of the system and form more reasonable offloading strategies. / Med den snabba utvecklingen av mobil kommunikationsteknik genereras mer och mer data i utkanten av nätverket, och människor börjar överväga att decentralisera datoruppgifter till kanten av nätverket. Och byggde ett komplett mobilt edge computing -arkitektursystem. Edge -dators nätverksarkitektur skiljer sig från den traditionella nätverksarkitekturen. Dess distribuerade konfiguration kan kompensera för eventuella brister i traditionella nätverk, såsom överbelastning av data, ökad fördröjning och begränsad kapacitet. Med den ständiga utvecklingen av 5G -teknik står satellitkommunikationsnät också inför många nya affärsutmaningar. Genom att använda inaktiv datorkraft och lagringsutrymme på satelliter och integrera edge computing -teknik i satellitkommunikationsnät kommer det att förkorta servicetiden för traditionella mobila satelliter kraftigt, förbättra satellitkommunikationstjänstkvaliteten och förbättra satellituppgiftsbehandlingsförmågan och därigenom förbättra satelliten edge computing systemprestanda. Det primära problemet som begränsar datorprestanda för satellitkantnät är hur man får en mer effektiv dynamisk tjänstavlastningsstrategi. Detta papper övervakar servicebelastningen av satellitnoder i olika perioder, markpositionsinformation och annan statusinformation använder Markov - beslutsprocessen för att modellera den dynamiska distributionen av satellitkantstjänster och får slutligen en uppsättning tjänstedynamik baserad på modell och design . Distributionsplanen är baserad på en djupt förbättrad algoritm för dynamisk distribution av tjänster. Det här dokumentet studerar huvudsakligen prestandan för DQN -algoritmen och två förbättrade DQN - algoritmer Double DQN och Dueling DQN i olika serviceförfrågningstyper och olika systemscenarier. Jämfört med befintliga algoritmer för serviceutplacering är prestandan för algoritmer för djupförstärkning något bättre.
|
Page generated in 0.1313 seconds