• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 168
  • 64
  • 27
  • 25
  • 13
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 370
  • 99
  • 98
  • 44
  • 38
  • 35
  • 32
  • 30
  • 27
  • 27
  • 25
  • 24
  • 24
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The Passive Scalar Concentration and Velocity Fields of Isolated Turbulent Puffs

Ghaem-Maghami, Elham 01 August 2006 (has links)
"Passive scalar concentration and velocity fields of isolated turbulent puffs were examined experimentally using the planar laser Mie scattering and PIV techniques, respectively. Work in WPI laboratories on reacting, fully-modulated jets has indicated significantly reduced flame lengths for compact puffs in comparison with steady and pulsed jets. Of particular interest is the entrainment and mixing of isolated turbulent puffs away from the nozzle. The present experiments were carried out in order to enhance fundamental understanding of the velocity fields associated with isolated, turbulent puffs. Puffs were generated by injecting air through a 5 mm diameter nozzle into a flow chamber with a weak co-flow. The injection time was varied by the use of a fast-response solenoid valve from 20 ms to 161 ms. Puffs with a Reynolds number of 5,000 were examined in the range of 25 - 75 diameters downstream of the nozzle. The results indicate that as the injection volume increases, puffs evolve from a spherical geometry to one with a tail. The distribution of a passive scalar within the examined turbulent puffs is unlike that in turbulent vortex rings. The half-width of radial concentration profile through the puff center decreases as the injection volume increases. On the other hand, the puff length in the axial direction increases with the injection volume. The results from phase-locked PIV measurements indicate that the largest axial mean velocities and the radial velocity fluctuation are within the central portion of the puff and the largest axial velocity fluctuation are typically present above the puff center. The turbulent shear stress profiles within puffs are antisymmetric about the centerline and the maximum magnitude for the smallest injection volume is 2.5 times the steady jet value. The vorticity fields calculated from phase-locked velocity field data indicate the presence of vorticity throughout the puff volume. The ratio of puff volume flow rate to steady jet at the puff center location was largest for the smallest injection volume. The majority of entrainment into the puff occurs below the puff center while the puff cap pushes out into surrounding fluid. In general, the puff characteristics did not reveal an internal structure analogous to that in the turbulent vortex ring."
32

Fluctuation statistics of scalar advected by different prescribed velocity fields =: 不同指定速度場帶動下標量之漲落的統計性質. / 不同指定速度場帶動下標量之漲落的統計性質 / Fluctuation statistics of scalar advected by different prescribed velocity fields =: Bu tong zhi ding su du chang dai dong xia biao liang zhi zhang luo de tong ji xing zhi. / Bu tong zhi ding su du chang dai dong xia biao liang zhi zhang luo de tong ji xing zhi

January 1996 (has links)
by Tsang Yue Kin. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1996. / Includes bibliographical references (leaves 120-122). / by Tsang Yue Kin. / Contents --- p.ii / List of Figures --- p.iv / List of Tables --- p.vi / Abstract --- p.vii / Acknowledgement --- p.viii / Chapter Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Probability Density Function in Turbulence --- p.2 / Chapter 1.2 --- Scaling Laws in Turbulence --- p.6 / Chapter Chapter 2. --- The Problem --- p.12 / Chapter 2.1 --- Random Advection of a Passive Scalar --- p.12 / Chapter 2.2 --- Numerical Implementation --- p.14 / Chapter Chapter 3. --- Statistics of Scalar Fluctuation --- p.19 / Chapter 3.1 --- Results --- p.19 / Chapter 3.1.1 --- Probability Density Function of Scalar Fluctuation --- p.20 / Chapter 3.1.2 --- Exact Formula for PDF --- p.20 / Chapter 3.1.3 --- Other Velocity Statistics --- p.24 / Chapter 3.2 --- Conditional Averages q(x) and r(x) --- p.25 / Chapter 3.2.1 --- q(x) --- p.25 / Chapter 3.2.2 --- r(x) --- p.39 / Chapter 3.2.3 --- PDF calculated from various forms of q(x) and r(x) --- p.46 / Chapter 3.3 --- Other Velocity Statistics --- p.55 / Chapter Chapter 4. --- Statistics of Scalar Difference --- p.75 / Chapter 4.1 --- PDF of Scalar Difference --- p.75 / Chapter 4.1.1 --- Results --- p.76 / Chapter 4.1.2 --- Relation between PT{x) and 5S2n(T) --- p.80 / Chapter 4.2 --- Scaling of S2n(T) --- p.82 / Chapter 4.3 --- Other Velocity Statistics --- p.90 / Chapter 4.4 --- Discussions --- p.103 / Chapter Chapter 5. --- Conclusion --- p.105 / Appendix A. PDF of Stream Functions --- p.107 / Chapter A.1 --- General Formalism --- p.107 / Chapter A.2 --- Applications --- p.108 / Appendix B. Generation of Random Deviates --- p.112 / Appendix C. Check of Stationarity --- p.114 / Appendix D. Calculations of the coefficients of q(x) and r(x) --- p.117 / Bibliography --- p.120
33

Modelling Advection and Diffusion in Microchannels

Beutel, Dan 01 June 2003 (has links)
This project will investigate mixing in microchannels. Specifically, the advection and diffusion of a passive scalar, using a split step Monte Carlo method. Numerically the implementation of this method is well understood. The current experimental geometry is a rectangular pipe with grooves on one wall. Mixing results with straight walls agree closely with experiment. The velocity field over grooves is also studied.
34

Physical modelling of mixing between rectangular jets present in tangentially fired brown coal boilers.

Scarsella, Alessio Angelo January 2007 (has links)
Large scale power generation commences with the combustion of coal or other fuel, which in turn converts high pressure water into steam which then drives a turbine thus generating electricity. Burning high moisture coal, such as lignite, for power generation implies that a significant amount of energy is wasted in vaporising the moisture, which could otherwise be used in the steam raising process. This implies that more moist coal would be required to drive the same process than if the coal was drier, thus increasing the amount of combustion products such as greenhouses gases. Introducing a dried coal in an existing boiler will significantly change the heat flux profiles, which could result in boiler damage or excessive fouling. Flame temperature is influenced by the supply of reactants; in most cases the limiting reactant will be oxygen. The supply of oxygen (through air) to a pneumatically transported coal stream and subsequent reaction is controlled by the localised fluid mechanics or ‘mixing’. This research aims to provide an understanding of the mixing process between the pneumatically transported coal and air in brown coal fired boilers by modelling the individual jets. The effects of the change in velocity ratio for the air (secondary) jets and fuel (primary) jets of rectangular burners typical of those found in brown coal fired boilers has been studied experimentally and is reported in this thesis. In particular, scientific analysis was used to investigate the physical mechanisms which control fuel-air mixing, and to quantify the concentration of primary and secondary fluid. The concentration data was used in a regression model in conjunction with a reactive combustion model, developed from a 1:30 scale cold model of the Yallourn W’ stage 2 boiler, in order that overall boiler performance can be assessed. This overall study is fundamental as a result of the questions raised concerning the future of brown coal in modern society. A qualitative flow visualisation study of the unconfined 1:30 scaled primary, and two adjacent rectangular jets, was conducted using single colour planar laser induced fluorescence. The characteristics of the jet flow were examined by imaging individually seeded primary and secondary jets and were visualised through four different planes longitudinally, on the axes of each jet. In addition, a transverse qualitative and quantitative study on the rectangular jets was also conducted for the individually seeded jets, and was visualised through planes of flow perpendicular to the direction flow, specifically at axial stations of x/D =0.1, 0.2, 0.5, 1, 2, 4, 6 and 8. The flow characteristics were also examined under different co-flow conditions, particularly secondary to primary jet velocity ratios (λ) of 0, 0.55, 1.4, 2.8, 3.6 and ∞. This quantitative data yields the basis for a 3D regression model to predict fuel-air mixing in actual boilers. A semi-quantitative investigation into some geometrical modifications on the rectangular jets was also conducted at velocity ratios of λ=0, 0.55 and 1.4. The rectangular nozzles were fitted with base plates orientated at 90 degrees and 60 degrees to the direction of flow. The longitudinal flow visualisation study highlighted the effect of velocity ratio on the flow field of the primary and secondary jets. In particular it showed that the main structures of the primary and secondary jets are sensitive to the co-flowing conditions. The primary jet also experienced the formation of coherent structures close to the bluff body re-circulation region for λ>2.8. The quantitative transverse analysis of the rectangular jets showed that the primary jet and secondary jets close to the nozzle exit plane distorted with a change in co-flowing conditions. The primary jet experienced distortion for λ>1.4, and the secondary jets experienced distortion for λ <1.4. A plausible mechanism for this “distortion” can be explained by different co-flowing conditions altering the velocity gradients of the jet, thus changing the denomination of the counter rotating vortices present in the corners of rectangular jets, allowing them to alter jet shape. The transverse quantitative analysis of the rectangular jets allowed for graphical representation of the normalised concentration of the primary and secondary jets in the radial direction and the centreline mixture fraction decay. The analysis of the latter showed that the primary jet, under all co-flow conditions, reached self-similarity at approximately x/D =4, whereas the secondary jets did so at x/D =2. The primary jets observed greater rates of centreline dilution at high velocity ratios, whereas the secondary jets did so at λ=0.55. The quantification of the centreline concentration decay obeyed the inverse rate law for all co-flowing conditions. The first order decay constant K₁, was found to be heavily dependant on velocity ratio. The planar transverse quantitative data of the primary and secondary jets was used with the method of weighted squares to develop a regression model that would three-dimensionally reproduce the scalar mixing field as a function of velocity ratio. The regression model reproduces scalar quantities for λ=0 and λ=0.55 to 3.6 for the primary jet and λ=0.55 to 3.6 and ∞ for the secondary jet, and is capable of predicting primary and secondary bulk fluid concentrations within 30 to 40 % of the measured values. A sensitivity analysis on the regression model revealed that it is highly responsive to the momentum-controlling region between the jets with a change in velocity ratio. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1297627 / Thesis (Ph.D.) -- University of Adelaide, School of Chemical Engineering, 2007
35

Physical modelling of mixing between rectangular jets present in tangentially fired brown coal boilers.

Scarsella, Alessio Angelo January 2007 (has links)
Large scale power generation commences with the combustion of coal or other fuel, which in turn converts high pressure water into steam which then drives a turbine thus generating electricity. Burning high moisture coal, such as lignite, for power generation implies that a significant amount of energy is wasted in vaporising the moisture, which could otherwise be used in the steam raising process. This implies that more moist coal would be required to drive the same process than if the coal was drier, thus increasing the amount of combustion products such as greenhouses gases. Introducing a dried coal in an existing boiler will significantly change the heat flux profiles, which could result in boiler damage or excessive fouling. Flame temperature is influenced by the supply of reactants; in most cases the limiting reactant will be oxygen. The supply of oxygen (through air) to a pneumatically transported coal stream and subsequent reaction is controlled by the localised fluid mechanics or ‘mixing’. This research aims to provide an understanding of the mixing process between the pneumatically transported coal and air in brown coal fired boilers by modelling the individual jets. The effects of the change in velocity ratio for the air (secondary) jets and fuel (primary) jets of rectangular burners typical of those found in brown coal fired boilers has been studied experimentally and is reported in this thesis. In particular, scientific analysis was used to investigate the physical mechanisms which control fuel-air mixing, and to quantify the concentration of primary and secondary fluid. The concentration data was used in a regression model in conjunction with a reactive combustion model, developed from a 1:30 scale cold model of the Yallourn W’ stage 2 boiler, in order that overall boiler performance can be assessed. This overall study is fundamental as a result of the questions raised concerning the future of brown coal in modern society. A qualitative flow visualisation study of the unconfined 1:30 scaled primary, and two adjacent rectangular jets, was conducted using single colour planar laser induced fluorescence. The characteristics of the jet flow were examined by imaging individually seeded primary and secondary jets and were visualised through four different planes longitudinally, on the axes of each jet. In addition, a transverse qualitative and quantitative study on the rectangular jets was also conducted for the individually seeded jets, and was visualised through planes of flow perpendicular to the direction flow, specifically at axial stations of x/D =0.1, 0.2, 0.5, 1, 2, 4, 6 and 8. The flow characteristics were also examined under different co-flow conditions, particularly secondary to primary jet velocity ratios (λ) of 0, 0.55, 1.4, 2.8, 3.6 and ∞. This quantitative data yields the basis for a 3D regression model to predict fuel-air mixing in actual boilers. A semi-quantitative investigation into some geometrical modifications on the rectangular jets was also conducted at velocity ratios of λ=0, 0.55 and 1.4. The rectangular nozzles were fitted with base plates orientated at 90 degrees and 60 degrees to the direction of flow. The longitudinal flow visualisation study highlighted the effect of velocity ratio on the flow field of the primary and secondary jets. In particular it showed that the main structures of the primary and secondary jets are sensitive to the co-flowing conditions. The primary jet also experienced the formation of coherent structures close to the bluff body re-circulation region for λ>2.8. The quantitative transverse analysis of the rectangular jets showed that the primary jet and secondary jets close to the nozzle exit plane distorted with a change in co-flowing conditions. The primary jet experienced distortion for λ>1.4, and the secondary jets experienced distortion for λ <1.4. A plausible mechanism for this “distortion” can be explained by different co-flowing conditions altering the velocity gradients of the jet, thus changing the denomination of the counter rotating vortices present in the corners of rectangular jets, allowing them to alter jet shape. The transverse quantitative analysis of the rectangular jets allowed for graphical representation of the normalised concentration of the primary and secondary jets in the radial direction and the centreline mixture fraction decay. The analysis of the latter showed that the primary jet, under all co-flow conditions, reached self-similarity at approximately x/D =4, whereas the secondary jets did so at x/D =2. The primary jets observed greater rates of centreline dilution at high velocity ratios, whereas the secondary jets did so at λ=0.55. The quantification of the centreline concentration decay obeyed the inverse rate law for all co-flowing conditions. The first order decay constant K₁, was found to be heavily dependant on velocity ratio. The planar transverse quantitative data of the primary and secondary jets was used with the method of weighted squares to develop a regression model that would three-dimensionally reproduce the scalar mixing field as a function of velocity ratio. The regression model reproduces scalar quantities for λ=0 and λ=0.55 to 3.6 for the primary jet and λ=0.55 to 3.6 and ∞ for the secondary jet, and is capable of predicting primary and secondary bulk fluid concentrations within 30 to 40 % of the measured values. A sensitivity analysis on the regression model revealed that it is highly responsive to the momentum-controlling region between the jets with a change in velocity ratio. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1297627 / Thesis (Ph.D.) -- University of Adelaide, School of Chemical Engineering, 2007
36

Scalar Fields and Alternatives in Cosmology and Black Holes

Leith, Ben Maitland January 2007 (has links)
Extensions to general relativity are often considered as possibilities in the quest for a quantum theory of gravity on one hand, or to resolve anomalies within cosmology on the other. Scalar fields, found in many areas of physics, are frequently studied in this context. This is partly due to their manifestation in the effective four dimensional theory of a number of underlying fundamental theories, most notably string theory. This thesis is concerned with the effects of scalar fields on cosmological and black hole solutions. By comparison, an analysis of an inhomogeneous cosmological model which requires no extensions to general relativity is also undertaken. In chapter three, examples of numerical solutions to black hole solutions, which have previously been shown to be linearly stable, are found. The model includes at least two scalar fields, non-minimally coupled to electromagnetism and hence possesses non-trivial contingent primary hair. We show that the extremal solutions have finite temperature for an arbitrary coupling constant. Chapter four investigates the effects of higher order curvature corrections and scalar fields on the late-time cosmological evolution. We find solutions which mimic many of the phenomenological features seen in the post-inflation Universe. The effects due to non-minimal scalar couplings to matter are also shown to be negligible in this context. Such solutions can be shown to be stable under homogeneous perturbations. Some restrictions on the value of the slope of the scalar coupling to the Gauss-Bonnet term are found to be necessary to avoid late-time superluminal behaviour and dominant energy condition violation. A number of observational tests are carried out in chapter five on a new approach to averaging the inhomogeneous Universe. In this "Fractal Bubble model" cosmic acceleration is realised as an apparent effect, due to quasilocal gravitational energy gradients. We show that a good fit can be found to three separate observations, the type Ia supernovae, the baryon acoustic oscillation scale and the angular scale of the sound horizon at last scattering. The best fit to the supernovae data is χ² ≃ 0:9 per degree of freedom, with a Hubble parameter at the present epoch of H0 = 61:7+1:4 -1:3 km sec⁻¹ Mpc⁻¹ , and a present epoch volume void fraction of 0:76 ± 0:05.
37

Scalar fields and alternatives in cosmology and black holes : a thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Physics in the University of Canterbury /

Leith, Ben Maitland. January 2007 (has links)
Thesis (Ph. D.)--University of Canterbury, 2007. / Typescript (photocopy). Includes bibliographical references (p. 117-140). Also available via the World Wide Web.
38

Feature tracking of 3D scalar datasets in the 'visit' environment

Pangrikar, Rohini M. January 2008 (has links)
Thesis (M.S.)--Rutgers University, 2008. / "Graduate Program in Electrical and Computer Engineering." Includes bibliographical references (p. 60-61).
39

Cosmological models of the early universe

Mimoso, Jose Pedro January 1993 (has links)
No description available.
40

The meaning of approximative adverbs: evidence from European Portuguese

Matos Amaral, Patricia 24 August 2007 (has links)
No description available.

Page generated in 0.0558 seconds