• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Theoretical considerations in the use of scalar-tensor theories of gravity in inflationary models

Edwards, David Craig January 2018 (has links)
The inflationary paradigm is one which was designed to answer questions that arose from classical Hot Big Bang cosmology. The period of rapid expansion in the early Universe provides a mechanism to solve the flatness, horizon and relic problems. More importantly, since the theory was first introduced it has been realised that it also provides a mechanism to generate the initial perturbations from which structure in the Universe can grow. In the zoo of potential inflationary models there is a dominant class: slow-roll inflation. The idea that the energy density of the inflationary field is dominated by its potential highly simplifies the calculations required to predict observable quantities. This simplification relies on all the information required to know the subsequent dynamics of the field to be encoded in the space Φ-Φ̇; it must be an effective phase space. I show that Φ-Φ̇ can be considered to be such a space for the most general scalar-tensor theory which gives second-order equations of motion: Horndeski theory. There are theoretical issues associated with this reduction that are illuminated through specific examples in which they occur. A theoretical issue with inflation is that there is an overabundance of models, with some capable of predicting any value of the possible observables. The second block of work in this thesis looks at a particular set of models that make the same observational prediction. These 'attractor' models utilise a non-minimal coupling between the inflationary fields and gravity and are studied in depth, both in the case of one and several fields. Firstly, I examine the Universal Attractors, a single field subset of these models. I show, in detail, the observational prediction such a model makes in the case of a strong non-minimal coupling and then examine the constraints it would be possible to put on such a coupling if a confirmed detection of primordial gravitational waves was made. Despite the discussion existing in the literature there is a small deviation of the Universal Attractor models from the predictions of the Starobinsky model. Furthermore, the coupling, ξ is found to be constrained so that |ξ| < 1 in the case where there a level of detectable primordial tensor modes. While the attractor models have an effective one-field description in reality there are several other fields that are assumed to be fixed during the inflationary phase. This claim requires careful examination as the field-space of the models generally is not flat. This curvature can cause a destabilising effect with certain parameters and so I investigate how susceptible the α-attractors and related models are to the destabilisation. A key result of this chapter is to highlight how important it is to not rely on the slow-roll approximation when assessing the effect of the instability, as the region where the effect begins to become large corresponds with the region where slow-roll begins to break down. Assuming the slow-roll approximation is valid leads to an over-estimation of the effect that the instability mechanism has. Despite this, some of the models considered are seen to experience the instability for certain ranges of model parameters. Making the assumption that any occurrence of the instability will, at the very least, move the observational prediction of the model outside the currently constrained range allows a constraint on the model parameter in question which directly translates to a theoretical lower bound on the tensor-scalar ratio, r > 0.0005.
2

Modelos cosmológicos numa teoria geométrica escalar - tensorial da gravitação: aspectos clássicos e quânticos

Alves Júnior, Francisco Artur Pinheiro 27 September 2016 (has links)
Submitted by Vasti Diniz (vastijpa@hotmail.com) on 2017-09-18T11:29:37Z No. of bitstreams: 1 arquivototal.pdf: 1956067 bytes, checksum: 845c3d0cd5113c8498d955af9cdcd907 (MD5) / Made available in DSpace on 2017-09-18T11:29:37Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1956067 bytes, checksum: 845c3d0cd5113c8498d955af9cdcd907 (MD5) Previous issue date: 2016-09-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this thesis, we deal with a particular geometric scalar tensor theory, which is a version of the Brans-Dicke gravitation, formulated in aWeyl integrable space-time. This formulation is done using the Palatini's variation procedure. The main point of our work is to perform two particular applications of the geometrical Brans-Dicke theory. The rst one is the study of geometric fase transition phenomena, that's related to a continuous change in the space-time structure of the universe from a Riemann's geometry to a Weyl's geometry, or in the inverse sense, from Weyl's geometry to Riemann's geometry. This phenomena seems to take place when the universe starts to expand in a accelerated rate. The second one is the investigation of classical and quantum behaviour of a anisotropic n-dimensional universe . To nd solutions that display the dynamical compacti cation of non observed extra dimensions is the main motivation to study such universe. / Nesta tese, reapresentamos uma teoria escalar tensorial geométrica, que é uma versão da gravitação de Brans-Dicke formulada em um espaço-tempo de Weyl integrável. Com esta teoria fazemos duas aplicações especí cas. Uma delas para o estudo de um fenômeno, que chamamos de transição de fase geométrica, uma mudança contínua na estrutura geom étrica do espaço-tempo. Este fenômeno parece ocorrer quando o universo se expande aceleradamente. A segunda aplicação reside no estudo clássico e quântico do comportamento de um modelo de universo n-dimensional anisotrópico. A motivação para esta investigação é a busca de soluções que exibem o compactação dinâmica das dimensões extras, que não são observadas.
3

Études sur la gravitation en théorie des champs classiques et quantiques

Massart, Victor 08 1900 (has links)
Cette thèse porte sur la gravitation et certains de ses liens avec la théorie des champs. Le point de départ de cette recherche a été l’étude de la limite newtonienne de la relativité générale. Très vite, notre intérêt s’est porté sur l’effet du temps retardé et son rôle dans l’absence d’aberration. Ce manque d’aberration est la raison pour laquelle la force pointe dans la direction instantanée (extrapolée) pour des sources sans accélération, malgré la vitesse finie de la gravitation (c’est aussi le cas pour l’électromagnétisme). Ceci nous a conduit à calculer le champ résultant entre deux masses accélérées avec la présence d’aberration. Nous avons en particulier considéré le mouvement de deux masses de telle façon que la force totale de Newton à une position s’annule alors que les effets du temps retardé soient bien différents de zéro. Nous avons pu calculer ces derniers et proposer deux situations où ils pourraient être observés dans le futur. L’étude de la linéarisation de la relativité générale a naturellement porté notre intérêt sur la physique du graviton, la version quantifiée de la théorie classique linéaire. Plusieurs travaux sur l’impossibilité d’observer directement ce graviton [1,2] ainsi que des expériences de pensée sur la possibilité de le quantifier ou non [3] ont piqué notre curiosité. C’est ce qui a lancé la recherche de la section efficace (et du potentiel) dans le cas d’une diffusion gravitationnelle sur une particule initialement dans une superposition spatiale. En parallèle de ces recherches, des discussions avec mon collègue Kévin Nguyen et la lecture de son article [4], ont attiré mon attention sur le problème de la constante cosmologique et l’élégante solution proposée. Cette dernière est basée sur l’ajout d’un scalaire couplé non minimalement avec la gravité et permet d’expliquer la valeur minuscule de la constante cosmologique par certains très petits paramètres du champ scalaire. Leur solution était cependant encore très théorique, car elle n’était valable que dans un univers sans matière. Nous avons donc analysé l’effet de la matière sur l’évolution du champ scalaire et montré que dans une partie de l’espace des paramètres, la théorie considérée résolvait le problème de la constante cosmologique tout en restant indistinguable de la relativité générale. / This thesis concerns gravitation and some of its connections with field theory. The starting point of this research was the study of the Newtonian limit of general relativity. Our interest was focused on the effect of retarded time and its role in the absence of aberration. Lack of aberration is the reason why the gravitational force points in the instantaneous (extrapolated) direction for unaccelerated sources, despite the finite speed of propagation of gravity (this also holds true for electromagnetism). Naturally this led us to compute the resulting gravitational field of accelerating masses, where aberration is not absent. In particular, we considered the motion of two masses such that their total Newtonian force at a position vanished but the retarded gravitational effects were non-zero. We were able to calculate these retarded effects and to propose two situations where they could be observed in the future. The study of the linearization of general relativity naturally arouse our interest toward the physics of gravitons, the quantized version of the linear classical theory. In particular, there has been much thought and literature on the impossibility of directly observing a graviton [1, 2] as well as thought experiments on the possibility of quantizing gravity or not [3]. This led to the calculation of the cross section (and gravitational potential) in the case of the gravitational scattering off a massive particle that is in a spatially non-local quantum superposition. In parallel with this research, some discussions with my colleague Kévin Nguyen about his article [4] on the problem of the cosmological constant, focussed my interest on this problem and the elegant solution proposed. The solution is based on the addition of a nonminimally coupled scalar and makes it possible to explain the tiny value of the cosmological constant through some small parameters of the scalar field. The solution is however very theoretical as it was only done in a matter free universe. We therefore examined at the effect of different kinds of matter on the evolution of the scalar field. We show that in one part of the parameter space, the theory we considered resolved the cosmological constant problem while being indistinguishable from general relativity.

Page generated in 0.063 seconds