• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 15
  • 14
  • 13
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Traitement d’images de microscopie confocale 3D haute résolution du cerveau de la mouche Drosophile / Three-dimensional image analysis of high resolution confocal microscopy data of the Drosophila melanogaster brain

Murtin, Chloé Isabelle 20 September 2016 (has links)
La profondeur possible d’imagerie en laser-scanning microscopie est limitée non seulement par la distance de travail des lentilles de objectifs mais également par la dégradation de l’image causée par une atténuation et une diffraction de la lumière passant à travers l’échantillon. Afin d’étendre cette limite, il est possible, soit de retourner le spécimen pour enregistrer les images depuis chaque côté, or couper progressivement la partie supérieure de l’échantillon au fur et à mesure de l‘acquisition. Les différentes images prises de l’une de ces manières doivent ensuite être combinées pour générer un volume unique. Cependant, des mouvements de l’échantillon durant les procédures d’acquisition engendrent un décalage non seulement sur en translation selon les axes x, y et z mais également en rotation autour de ces même axes, rendant la fusion entres ces multiples images difficile. Nous avons développé une nouvelle approche appelée 2D-SIFT-in-3D-Space utilisant les SIFT (scale Invariant Feature Transform) pour atteindre un recalage robuste en trois dimensions de deux images. Notre méthode recale les images en corrigeant séparément les translations et rotations sur les trois axes grâce à l’extraction et l’association de caractéristiques stables de leurs coupes transversales bidimensionnelles. Pour évaluer la qualité du recalage, nous avons également développé un simulateur d’images de laser-scanning microscopie qui génère une paire d’images 3D virtuelle dans laquelle le niveau de bruit et les angles de rotations entre les angles de rotation sont contrôlés avec des paramètres connus. Pour une concaténation précise et naturelle de deux images, nous avons également développé un module permettant une compensation progressive de la luminosité et du contraste en fonction de la distance à la surface de l’échantillon. Ces outils ont été utilisés avec succès pour l’obtention d’images tridimensionnelles de haute résolution du cerveau de la mouche Drosophila melanogaster, particulièrement des neurones dopaminergiques, octopaminergiques et de leurs synapses. Ces neurones monoamines sont particulièrement important pour le fonctionnement du cerveau et une étude de leur réseau et connectivité est nécessaire pour comprendre leurs interactions. Si une évolution de leur connectivité au cours du temps n’a pas pu être démontrée via l’analyse de la répartition des sites synaptiques, l’étude suggère cependant que l’inactivation de l’un de ces types de neurones entraine des changements drastiques dans le réseau neuronal. / Although laser scanning microscopy is a powerful tool for obtaining thin optical sections, the possible depth of imaging is limited by the working distance of the microscope objective but also by the image degradation caused by the attenuation of both excitation laser beam and the light emitted from the fluorescence-labeled objects. Several workaround techniques have been employed to overcome this problem, such as recording the images from both sides of the sample, or by progressively cutting off the sample surface. The different views must then be combined in a unique volume. However, a straightforward concatenation is often not possible, because the small rotations that occur during the acquisition procedure, not only in translation along x, y and z axes but also in rotation around those axis, making the fusion uneasy. To address this problem we implemented a new algorithm called 2D-SIFT-in-3D-Space using SIFT (scale Invariant Feature Transform) to achieve a robust registration of big image stacks. Our method register the images fixing separately rotations and translations around the three axes using the extraction and matching of stable features in 2D cross-sections. In order to evaluate the registration quality, we created a simulator that generates artificial images that mimic laser scanning image stacks to make a mock pair of image stacks one of which is made from the same stack with the other but is rotated arbitrarily with known angles and filtered with a known noise. For a precise and natural-looking concatenation of the two images, we also developed a module progressively correcting the sample brightness and contrast depending on the sample surface. Those tools we successfully used to generate tridimensional high resolution images of the fly Drosophila melanogaster brain, in particular, its octopaminergic and dopaminergic neurons and their synapses. Those monoamine neurons appear to be determinant in the correct operating of the central nervous system and a precise and systematic analysis of their evolution and interaction is necessary to understand its mechanisms. If an evolution over time could not be highlighted through the pre-synaptic sites analysis, our study suggests however that the inactivation of one of these neuron types triggers drastic changes in the neural network.
12

2.5D Feature Based Correspondence Matching for Part Localization

Asplund, Hugo January 2024 (has links)
In the area of automation, object localization stands as a fundamental functionalitywith widespread applicability. This master’s thesis focuses on a specificapplication involving robot object picking. Given recent advancements in depthcamera technology, there is a high interest in exploring the synergistic integrationof both 2D and 3D data to address challenges such as missing data, occlusion,varying viewing angles, and diverse lighting conditions. This master’s thesis presents the development of two distinct algorithms for arbitraryshaped template matching using 2D image features. Both algorithms leveragefeatures detected by the GoodFeaturesToTrack algorithm and described withScale-invariant feature transform (SIFT) descriptors. While an initial sliding windowmatcher was developed, it was ultimately discarded due to extensive timerequirements. Instead, a correspondence matcher was created, offering two variations:one exclusively employing 2D image data for matching and another utilizing3D coordinates to enhance matching accuracy. The correspondence matchingalgorithms showed similar strengths and weaknesses. They demonstrated proficiencyin handling scenarios characterized by occlusion, minor tilt, and varyingscaling. Both variations struggled with objects 90-degrees rotated and could inmany cases not find them. The findings suggest that the developed feature-based correspondence matchingalgorithm holds promise for object localization in industrial picking applications,although with limitations concerning objects with substantial rotationdifferences. Addressing the challenge of large rotations is recommended for enhancingthe algorithm’s robustness, followed by comprehensive testing to ascertainits efficacy in diverse scenarios.iii
13

Use of Coherent Point Drift in computer vision applications

Saravi, Sara January 2013 (has links)
This thesis presents the novel use of Coherent Point Drift in improving the robustness of a number of computer vision applications. CPD approach includes two methods for registering two images - rigid and non-rigid point set approaches which are based on the transformation model used. The key characteristic of a rigid transformation is that the distance between points is preserved, which means it can be used in the presence of translation, rotation, and scaling. Non-rigid transformations - or affine transforms - provide the opportunity of registering under non-uniform scaling and skew. The idea is to move one point set coherently to align with the second point set. The CPD method finds both the non-rigid transformation and the correspondence distance between two point sets at the same time without having to use a-priori declaration of the transformation model used. The first part of this thesis is focused on speaker identification in video conferencing. A real-time, audio-coupled video based approach is presented, which focuses more on the video analysis side, rather than the audio analysis that is known to be prone to errors. CPD is effectively utilised for lip movement detection and a temporal face detection approach is used to minimise false positives if face detection algorithm fails to perform. The second part of the thesis is focused on multi-exposure and multi-focus image fusion with compensation for camera shake. Scale Invariant Feature Transforms (SIFT) are first used to detect keypoints in images being fused. Subsequently this point set is reduced to remove outliers, using RANSAC (RANdom Sample Consensus) and finally the point sets are registered using CPD with non-rigid transformations. The registered images are then fused with a Contourlet based image fusion algorithm that makes use of a novel alpha blending and filtering technique to minimise artefacts. The thesis evaluates the performance of the algorithm in comparison to a number of state-of-the-art approaches, including the key commercial products available in the market at present, showing significantly improved subjective quality in the fused images. The final part of the thesis presents a novel approach to Vehicle Make & Model Recognition in CCTV video footage. CPD is used to effectively remove skew of vehicles detected as CCTV cameras are not specifically configured for the VMMR task and may capture vehicles at different approaching angles. A LESH (Local Energy Shape Histogram) feature based approach is used for vehicle make and model recognition with the novelty that temporal processing is used to improve reliability. A number of further algorithms are used to maximise the reliability of the final outcome. Experimental results are provided to prove that the proposed system demonstrates an accuracy in excess of 95% when tested on real CCTV footage with no prior camera calibration.
14

Signal Processing Algorithms For Digital Image Forensics

Prasad, S 02 1900 (has links)
Availability of digital cameras in various forms and user-friendly image editing softwares has enabled people to create and manipulate digital images easily. While image editing can be used for enhancing the quality of the images, it can also be used to tamper the images for malicious purposes. In this context, it is important to question the originality of digital images. Digital image forensics deals with the development of algorithms and systems to detect tampering in digital images. This thesis presents some simple algorithms which can be used to detect tampering in digital images. Out of the various kinds of image forgeries possible, the discussion is restricted to photo compositing (Photo montaging) and copy-paste forgeries. While creating photomontage, it is very likely that one of the images needs to be resampled and hence there will be an inconsistency in some of its underlying characteristics. So, detection of resampling in an image will give a clue to decide whether the image is tampered or not. Two pixel domain techniques to detect resampling have been presented. The rest of them exploits the property of periodic zeros that occur in the second divergences due to interpolation during resembling. It requires a special condition on the resembling factor to be met. The second technique is based on the periodic zero-crossings that occur in the second divergences, which does not require any special condition on the resembling factor. It has been noted that this is an important property of revamping and hence the decay of this technique against mild counter attacks such as JPEG compression and additive noise has been studied. This property has been repeatedly used throughout this thesis. It is a well known fact that interpolation is essentially low-pass filtering. In case of photomontage image which consists of resample and non resample portions, there will be an in consistency in the high-frequency content of the image. This can be demonstrated by a simple high-pass filtering of the image. This fact has also been exploited to detect photomontaging. One approach involves performing block wise DCT and reconstructing the image using only a few high-frequency coercions. Another elegant approach is to decompose the image using wavelets and reconstruct the image using only the diagonal detail coefficients. In both the cases mere visual inspection will reveal the forgery. The second part of the thesis is related to tamper detection in colour filter array (CFA) interpolated images. Digital cameras employ Bayer filters to efficiently capture the RGB components of an image. The output of Bayer filter are sub-sampled versions of R, G and B components and they are completed by using demosaicing algorithms. It has been shown that demos icing of the color components is equivalent to resembling the image by a factor of two. Hence, CFA interpolated images contain periodic zero-crossings in its second differences. Experimental demonstration of the presence of periodic zero-crossings in images captured using four digital cameras of deferent brands has been done. When such an image is tampered, these periodic zero-crossings are destroyed and hence the tampering can be detected. The utility of zero-crossings in detecting various kinds of forgeries on CFA interpolated images has been discussed. The next part of the thesis is a technique to detect copy-paste forgery in images. Generally, while an object or a portion if an image has to be erased from an image, the easiest way to do it is to copy a portion of background from the same image and paste it over the object. In such a case, there are two pixel wise identical regions in the same image, which when detected can serve as a clue of tampering. The use of Scale-Invariant-Feature-Transform (SIFT) in detecting this kind of forgery has been studied. Also certain modifications that can to be done to the image in order to get the SIFT working effectively has been proposed. Throughout the thesis, the importance of human intervention in making the final decision about the authenticity of an image has been highlighted and it has been concluded that the techniques presented in the thesis can effectively help the decision making process.
15

Rekonstrukce 3D scény z obrazových dat / 3D Scene Reconstruction from Images

Hejl, Zdeněk January 2012 (has links)
This thesis describes methods of reconstruction of 3D scenes from photographs and videos using the Structure from motion approach. A new software capable of automatic reconstruction of point clouds and polygonal models from common images and videos was implemented based on these methods. The software uses variety of existing and custom solutions and clearly links them into one easily executable application. The reconstruction consists of feature point detection, pairwise matching, Bundle adjustment, stereoscopic algorithms and polygon model creation from point cloud using PCL library. Program is based on Bundler and PMVS. Poisson surface reconstruction algorithm, as well as simple triangulation and own reconstruction method based on plane segmentation were used for polygonal model creation.

Page generated in 0.0873 seconds