• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Géométrie et percolation sur des cartes à bord aléatoires / Geometry and percolation on random maps with a boundary

Richier, Loïc 30 June 2017 (has links)
Cette thèse porte sur des limites de grandes cartes à bord aléatoires. Dans un premier temps, nous nous intéressons aux propriétés géométriques de telles cartes. Nous montrons d'abord des résultats concernant les limites d'échelle et les limites locales du bord de cartes de Boltzmann dont le périmètre tend vers l'infini, que nous appliquons à l'étude du modèle O(n) rigide sur les quadrangulations. Ensuite, nous introduisons une famille de quadrangulations du demi-plan aléatoires avec un paramètre de torsion, dont on étudie les limites d'échelle et la structure de branchement. Enfin, nous établissons une propriété de confluence des géodésiques dans les cartes uniformes infinies du demi-plan, qui sont des limites locales de triangulations et quadrangulations à bord uniformes.Dans un second temps, nous considérons des modèles de percolation de Bernoulli sur les cartes uniformes infinies du demi-plan. Nous calculons le seuil de percolation par site critique pour les quadrangulations, et établissons une propriété d'universalité de ces modèles de percolation au point critique à partir des probabilités de croisement. Pour finir, nous étudions la limite locale de grands amas de percolation critiques en construisant l'amas critique émergent, une triangulation uniforme infinie du demi-plan munie d'un amas de percolation critique infini. / This thesis deals with limits of large random planar maps with a boundary. First, we are interested in geometric properties of such maps. We prove scaling and local limit results for the boundary of Boltzmann maps whose perimeter goes to infinity, which we apply to the study of the rigid O(n) loop model on quadrangulations. Next, we introduce a family of random half-planar quadrangulations with a skewness parameter, and study their scaling limits and branching structure. Finally, we establish a confluence property of geodesics in uniform infinite half-planar maps, which are local limits of uniform triangulations and quadrangulations with a boundary.Second, we consider Bernoulli percolation models on uniform infinite half-planar maps. We compute the critical site percolation threshold for quadrangulations, and prove a universality property of these percolation models at criticality involving crossing probabilities. To conclude, we study the local limit of large critical percolation clusters by defining the incipient infinite cluster, a uniform infinite half-planar triangulation equipped with an infinite critical percolation cluster.
2

Nelson-type Limits for α-Stable Lévy Processes

Al-Talibi, Haidar January 2010 (has links)
<p>Brownian motion has met growing interest in mathematics, physics and particularly in finance since it was introduced in the beginning of the twentieth century. Stochastic processes generalizing Brownian motion have influenced many research fields theoretically and practically. Moreover, along with more refined techniques in measure theory and functional analysis more stochastic processes were constructed and studied. Lévy processes, with Brownian motionas a special case, have been of major interest in the recent decades. In addition, Lévy processes include a number of other important processes as special cases like Poisson processes and subordinators. They are also related to stable processes.</p><p>In this thesis we generalize a result by S. Chandrasekhar [2] and Edward Nelson who gave a detailed proof of this result in his book in 1967 [12]. In Nelson’s first result standard Ornstein-Uhlenbeck processes are studied. Physically this describes free particles performing a random and irregular movement in water caused by collisions with the water molecules. In a further step he introduces a nonlinear drift in the position variable, i.e. he studies the case when these particles are exposed to an external field of force in physical terms.</p><p>In this report, we aim to generalize the result of Edward Nelson to the case of α-stable Lévy processes. In other words we replace the driving noise of a standard Ornstein-Uhlenbeck process by an α-stable Lévy noise and introduce a scaling parameter uniformly in front of all vector fields in the cotangent space, even in front of the noise. This corresponds to time being sent to infinity. With Chandrasekhar’s and Nelson’s choice of the diffusion constant the stationary state of the velocity process (which is approached as time tends to infinity) is the Boltzmann distribution of statistical mechanics.The scaling limits we obtain in the absence and presence of a nonlinear drift term by using the scaling property of the characteristic functions and time change, can be extended to other types of processes rather than α-stable Lévy processes.</p><p>In future, we will consider to generalize this one dimensional result to Euclidean space of arbitrary finite dimension. A challenging task is to consider the geodesic flow on the cotangent bundle of a Riemannian manifold with scaled drift and scaled Lévy noise. Geometrically the Ornstein-Uhlenbeck process is defined on the tangent bundle of the real line and the driving Lévy noise is defined on the cotangent space.</p>
3

Nelson-type Limits for α-Stable Lévy Processes

Al-Talibi, Haidar January 2010 (has links)
Brownian motion has met growing interest in mathematics, physics and particularly in finance since it was introduced in the beginning of the twentieth century. Stochastic processes generalizing Brownian motion have influenced many research fields theoretically and practically. Moreover, along with more refined techniques in measure theory and functional analysis more stochastic processes were constructed and studied. Lévy processes, with Brownian motionas a special case, have been of major interest in the recent decades. In addition, Lévy processes include a number of other important processes as special cases like Poisson processes and subordinators. They are also related to stable processes. In this thesis we generalize a result by S. Chandrasekhar [2] and Edward Nelson who gave a detailed proof of this result in his book in 1967 [12]. In Nelson’s first result standard Ornstein-Uhlenbeck processes are studied. Physically this describes free particles performing a random and irregular movement in water caused by collisions with the water molecules. In a further step he introduces a nonlinear drift in the position variable, i.e. he studies the case when these particles are exposed to an external field of force in physical terms. In this report, we aim to generalize the result of Edward Nelson to the case of α-stable Lévy processes. In other words we replace the driving noise of a standard Ornstein-Uhlenbeck process by an α-stable Lévy noise and introduce a scaling parameter uniformly in front of all vector fields in the cotangent space, even in front of the noise. This corresponds to time being sent to infinity. With Chandrasekhar’s and Nelson’s choice of the diffusion constant the stationary state of the velocity process (which is approached as time tends to infinity) is the Boltzmann distribution of statistical mechanics.The scaling limits we obtain in the absence and presence of a nonlinear drift term by using the scaling property of the characteristic functions and time change, can be extended to other types of processes rather than α-stable Lévy processes. In future, we will consider to generalize this one dimensional result to Euclidean space of arbitrary finite dimension. A challenging task is to consider the geodesic flow on the cotangent bundle of a Riemannian manifold with scaled drift and scaled Lévy noise. Geometrically the Ornstein-Uhlenbeck process is defined on the tangent bundle of the real line and the driving Lévy noise is defined on the cotangent space.
4

Limite d'échelle de cartes aléatoires en genre quelconque / Scaling Limit of Arbitrary Genus Random Maps

Bettinelli, Jérémie 26 October 2011 (has links)
Au cours de ce travail, nous nous intéressons aux limites d'échelle de deux classes de cartes. Dans un premier temps, nous regardons les quadrangulations biparties de genre strictement positif g fixé et, dans un second temps, les quadrangulations planaires à bord dont la longueur du bord est de l'ordre de la racine carrée du nombre de faces. Nous voyons ces objets comme des espaces métriques, en munissant leurs ensembles de sommets de la distance de graphe, convenablement renormalisée. Nous montrons qu'une carte prise uniformément parmi les cartes ayant n faces dans l'une de ces deux classes tend en loi, au moins à extraction près, vers un espace métrique limite aléatoire lorsque n tend vers l'infini. Cette convergence s'entend au sens de la topologie de Gromov--Hausdorff. On dispose de plus des informations suivantes sur l'espace limite que l'on obtient. Dans le premier cas, c'est presque sûrement un espace de dimension de Hausdorff 4 homéomorphe à la surface de genre g. Dans le second cas, c'est presque sûrement un espace de dimension 4 avec une frontière de dimension 2, homéomorphe au disque unité de R^2. Nous montrons en outre que, dans le second cas, si la longueur du bord est un petit~o de la racine carrée du nombre de faces, on obtient la même limite que pour les quadrangulations sans bord, c'est-à-dire la carte brownienne, et l'extraction n'est plus requise. / In this work, we discuss the scaling limits of two particular classes of maps. In a first time, we address bipartite quadrangulations of fixed positive genus g and, in a second time, planar quadrangulations with a boundary whose length is of order the square root of the number of faces. We view these objects as metric spaces by endowing their sets of vertices with the graph metric, suitably rescaled.We show that a map uniformly chosen among the maps having n faces in one of these two classes converges in distribution, at least along some subsequence, toward a limiting random metric space as n tends to infinity. This convergence holds in the sense of the Gromov--Hausdorff topology on compact metric spaces. We moreover have the following information on the limiting space. In the first case, it is almost surely a space of Hausdorff dimension 4 that is homeomorphic to the genus g surface. In the second case, it is almost surely a space of Hausdorff dimension 4 with a boundary of Hausdorff dimension 2 that is homeomorphic to the unit disc of R^2. We also show that in the second case, if the length of the boundary is little-o of the square root of the number of faces, the same convergence holds without extraction and the limit is the same as for quadrangulations without boundary, that is the Brownian map.
5

Conditionnement de grands arbres aléatoires et configurations planes non-croisées / Large conditioned Galton-Watson trees and plane noncrossing configurations

Kortchemski, Igor 17 December 2012 (has links)
Les limites d’échelle de grands arbres aléatoires jouent un rôle central dans cette thèse.Nous nous intéressons plus spécifiquement au comportement asymptotique de plusieurs fonctions codant des arbres de Galton-Watson conditionnés. Nous envisageons plusieurs types de conditionnements faisant intervenir différentes quantités telles que le nombre total de sommets ou le nombre total de feuilles, avec des lois de reproductions différentes.Lorsque la loi de reproduction est critique et appartient au domaine d’attraction d’uneloi stable, un phénomène d’universalité se produit : ces arbres ressemblent à un même arbre aléatoire continu, l’arbre de Lévy stable. En revanche, lorsque la criticalité est brisée, la communauté de physique théorique a remarqué que des phénomènes de condensation peuvent survenir, ce qui signifie qu’avec grande probabilité, un sommet de l’arbre a un degré macroscopique comparable à la taille totale de l’arbre. Une partie de cette thèse consiste à mieux comprendre ce phénomène de condensation. Finalement, nous étudions des configurations non croisées aléatoires, obtenues à partir d’un polygône régulier en traçant des diagonales qui ne s’intersectent pas intérieurement, et remarquons qu’elles sont étroitement reliées à des arbres de Galton-Watson conditionnés à avoir un nombre de feuilles fixé. En particulier, ce lien jette un nouveau pont entre les dissections uniformes et les arbres de Galton-Watson, ce qui permet d’obtenir d’intéressantes conséquences de nature combinatoire. / Scaling limits of large random trees play an important role in this thesis. We are more precisely interested in the asymptotic behavior of several functions coding conditioned Galton-Watson trees. We consider several types of conditioning, involving different quantities such as the total number of vertices or leaves, as well as several types of offspring distributions. When the offspring distribution is critical and belongs to the domainof attraction of a stable law, a universality phenomenon occurs: these trees look like the samecontinuous random tree, the so-called stable Lévy tree. However, when the offspring distributionis not critical, the theoretical physics community has noticed that condensation phenomenamay occur, meaning that with high probability there exists a unique vertex with macroscopicdegree comparable to the total size of the tree. The goal of one of our contributions is to graspa better understanding of this phenomenon. Last but not least, we study random non-crossingconfigurations consisting of diagonals of regular polygons, and notice that they are intimatelyrelated to Galton-Watson trees conditioned on having a fixed number of leaves. In particular,this link sheds new light on uniform dissections and allows us to obtain some interesting resultsof a combinatorial flavor.
6

Divers aspects des arbres aléatoires : des arbres de fragmentation aux cartes planaires infinies / Various aspects of random trees : from fragmentation trees to infinite planar maps

Stephenson, Robin 27 June 2014 (has links)
Nous nous intéressons à trois problèmes issus du monde des arbres aléatoires discrets et continus. Dans un premier lieu, nous faisons une étude générale des arbres de fragmentation auto-similaires, étendant certains résultats de Haas et Miermont en 2006, notamment en calculant leur dimension de Hausdorff sous des hypothèses malthusiennes. Nous nous intéressons ensuite à une suite particulière d’arbres discrets k-aires, construite de manière récursive avec un algorithme similaire à celui de Rémy de 1985. La taille de l’arbre obtenu à la n-ième étape est de l’ordre de n^(1/k), et après renormalisation, on trouve que la suite converge en probabilité vers un arbre de fragmentation. Nous étudions également des manières de plonger ces arbres les uns dans les autres quand k varie. Dans une dernière partie, nous démontrons la convergence locale en loi d’arbres de Galton-Watson multi-types critiques quand on les conditionne à avoir un grand nombre de sommets d’un certain type fixé. Nous appliquons ensuite ce résultat aux cartes planaires aléatoire pour obtenir la convergence locale en loi de grandes cartes de loi de Boltzmann critique vers une carte planaire infinie. / We study three problems related to discrete and continuous random trees. First, we do a general study of self-similar fragmentation trees, extending some results established by Haas and Miermont in 2006, in particular by computing the Hausdorff dimension of these trees under some Malthusian hypotheses. We then work on a particular sequence of k-ary growing trees, defined recursively with a similar method to Rémy’s algorithm from 1985. We show that the size of the tree obtained at the n-th step if of order n^(1/k), and, after renormalization, we prove that the sequence convergences to a fragmentation tree. We also study embeddings of the limiting trees as k varies. In the last chapter, we show the local convergence in distribution of critical multi-type Galton-Watson trees conditioned to have a large number of vertices of a fixed type. We then apply this result to the world of random planar maps, obtaining that large critical Boltzmann-distributed maps converge locally in distribution to an infinite planar map.

Page generated in 0.0755 seconds