• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Selective laser melting of 316L stainless steel and related composites: processing and properties

Salman, Omar 18 June 2019 (has links)
Unter den verschiedenen additiven Fertigungsverfahren stellt das selektive Laserschmelzen (SLM) eine optimale Technologie für die Herstellung von metallischen Bauteilen mit komplexen Geometrien und hervorragenden Eigenschaften dar. SLM-Bauteile werden Schicht für Schicht mit hochenergetischen Laserstrahlen hergestellt, was das SLM flexibler als konventionelle Produktionstechnologien wie das Gießen macht. Die beim SLM auftretenden schnellen Aufheiz-/Kühlraten können zu deutlich unterschiedlichen Gefügen im Vergleich zu herkömmlichen Herstellungsverfahren führen. Die beim SLM entstehenden Hochtemperaturgradienten können sich weiterhin positiv auf die Gefügeentstehung (Phasenbildung, Morphologie, …) und damit auf die mechanischen Eigenschaften der SLM-Bauteile auswirken. Darüber hinaus können die mit SLM gefertigten Teile mit der Notwendigkeit einer minimalen Nachbearbeitung in den Einsatz genommen werden. Bisher wurden mehrere Studien zu den Parametern: Optimierung oder Verarbeitung von Verbundwerkstoffen mit fehlerfreien Teilen durchgeführt Die Scanstrategie hat dabei einen besonders großen Einfluss bei der Materialbearbeitung durch die additive Fertigung. Die Optimierung der Scanstrategie ist daher von zentraler Bedeutung für die Synthese von Materialien mit verbesserten physikalischen und mechanischen Eigenschaften. Diese Arbeit untersucht die Wirkung von vier verschiedenen Scanning-Strategien auf das Gefüge und das mechanische Verhalten von 316L Edelstahl, synthetisiert durch selektives Laserschmelzen (SLM). Die Ergebnisse deuten darauf hin, dass die Scanstrategie einen vernachlässigbaren Einfluss auf die Phasenbildung und die Art des Gefüges hat, die während der SLM-Verarbeitung entsteht: Austenit ist die einzige Phase, die sich bildet, und alle Proben weisen eine zelluläre Morphologie auf. Die Scanstrategie beeinflusst jedoch erheblich die charakteristische Größe von Zellen und Körnern, die wiederum der Hauptfaktor für die Festigkeit unter Zugbelastung zu sein scheint. Andererseits haben Eigenspannungen offenbar keinen Einfluss auf die quasi-statischen mechanischen Eigenschaften der Proben. Das mit einem Streifenmuster mit Konturstrategie hergestellte Material weist das feinste Gefüge und die beste Kombination mechanischer Eigenschaften auf: Streckgrenze und Bruchdehnung liegen bei 550 MPa und 1010 MPa und die plastische Verformung bei über 50 %. Ein weiterer wichtiger Aspekt für die Anwendung des mittels SLM synthetisierten 316L-Stahls ist seine thermische Stabilität. Daher wurde der Einfluss des Glühens bei verschiedenen Temperaturen (573, 873, 1273, 1373 und 1673 K) auf die Stabilität der Phasen, der Zusammensetzung und des Gefüges des 316L-Edelstahls untersucht, der unter Verwendung des Streifenmuster mit Konturstrategie hergestellt wurde. Darüber hinaus wurden die durch die Wärmebehandlung induzierten Veränderungen genutzt, um die entsprechenden Variationen der mechanischen Eigenschaften der Proben unter Zugbelastung zu verstehen. Das Glühen hat keinen Einfluss auf die Phasenbildung: Bei allen hier untersuchten Proben wird ein einphasiger Austenit beobachtet. Darüber hinaus ändert das Glühen nicht die zufällige kristallographische Orientierung, die im Material nach der Synthese beobachtet wird. Das komplexe zelluläre Gefüge mit feinen Subkornstrukturen, die für die as-SLM-Proben im Ausgangszustand charakteristisch sind, ist bis zu 873 K stabil. Die Zellgröße nimmt mit steigender Glühtemperatur zu, bis das zelluläre Gefüge bei hohen Temperaturen nicht mehr beobachtet werden kann (T ≥ 1273 K). Die Festigkeit der Proben nimmt mit steigender Glühtemperatur durch die mikrostrukturelle Vergröberung ab. Die ausgezeichnete Kombination von Festigkeit und Duktilität des Materials im Ausgangszustand ist auf das komplexe zelluläre Gefüge und die Subkörner sowie die Fehlausrichtung zwischen Körnern, Zellen, Zellwänden und Subkörnern zurückzuführen. Mit dem Ziel, das mechanische Verhalten des 316L-Stahls weiter zu verbessern, wird der Einfluss harter Partikel einer zweiten Phase auf das Gefüge und die damit verbundenen mechanischen Eigenschaften untersucht. Dazu wurde mittels SLM ein Verbund aus einer 316L-Stahlmatrix und 5 Vol.% CeO2-Partikeln hergestellt. Die SLM-Parameter, die zu einer fehlerfreien 316L-Matrix führen, sind für die Herstellung von 316L/CeO2-Verbundproben nicht geeignet. Hochdichte Verbundproben können jedoch durch sorgfältige Einstellung der Laserscangeschwindigkeit unter Beibehaltung der anderen Parameter prozessiert werden. Die Zugabe der CeO2-Verstärkung verändert die Phasenbildung nicht, beeinflusst aber das Gefüge des Verbundwerkstoffs, welches im Vergleich zum partikelfreien 316L-Material deutlich verfeinert ist. Das verfeinerte Gefüge bewirkt eine signifikante Verstärkung im Verbund, ohne die plastische Verformung zu beeinträchtigen. Die Analyse des Einflusses einer zweiten Phase wird fortgesetzt, indem untersucht wird, wie TiB2-Partikel das Gefüge und die mechanischen Eigenschaften eines 316L-Edelstahls beeinflussen, der durch selektives Laserschmelzen hergestellt wird. Das für die unverstärkte 316L-Matrix charakteristische komplexe zelluläre Gefüge mit feinen Subkörnern ist in allen Proben zu finden. Die Zugabe der TiB2-Partikel reduziert die Größe der Körner und Zellen erheblich. Darüber hinaus sind die TiB2-Partikel in der 316L-Matrix homogen dispergiert und bilden kreisförmige Ausscheidungen mit einer Größe von etwa 50-100 nm entlang der Korngrenzen. Diese mikrostrukturellen Merkmale führen zu einer signifikanten Verfestigung im Vergleich zu den unverstärkten 316L-Proben. Diese Ergebnisse belegen, dass SLM erfolgreich zur Synthese von Verbundwerkstoffen aus dem Edelstahl 316L mit herausragenden mechanischen Eigenschaften im Vergleich zu einer unverstärkten 316L-Stahlmatrix eingesetzt werden kann. Dies könnte dazu beitragen, den Einsatz von SLM bei der Herstellung von Stahlmatrix-Verbundwerkstoffen für die Automobilindustrie, die Luft- und Raumfahrt und zahlreiche andere Anwendungen zu erweitern. / Among the different additive manufacturing processes, selective laser melting (SLM) represents an optimal choice for the fabrication of metallic components with complex geometries and superior properties. SLM parts are built layer-by-layer using high-energy laser beams, making SLM more flexible than conventional processing techniques, like casting. The fast heating/cooling rates occurring during SLM can result in remarkably different microstructures compared with conventional manufacturing processes. The high-temperature gradients characterising SLM can also have a positive effect on the microstructures and, in turn, on the mechanical properties of the SLM parts. Additionally, the SLM parts can be put into use with the necessity of minimal post-processing treatments. To date, a number of studies have been devoted to the parameters optimization or processing of composite materials with defect-free parts. The scanning strategy is one of the most influential parameters in materials processing by additive manufacturing. Optimization of the scanning strategy is thus of primary importance for the synthesis of materials with enhanced physical and mechanical properties. Accordingly, this thesis examines the effect of four different scanning strategies on the microstructure and mechanical behaviour of 316L stainless steel synthesized by selective laser melting (SLM). The results indicate that the scanning strategy has negligible influence on phase formation and the type of microstructure established during SLM processing: austenite is the only phase formed and all specimens display a cellular morphology. The scanning strategy, however, considerably affects the characteristic size of cells and grains that, in turn, appears to be the main factor determining the strength under tensile loading. On the other hand, residual stresses apparently have no influence on the quasi-static mechanical properties of the samples. The material fabricated using a stripe with contour strategy displays the finest microstructure and the best combination of mechanical properties: yield strength and ultimate tensile strength are about 550 and 1010 MPa and plastic deformation exceeds 50 %. Another important aspect for the application of 316L steel synthesized by SLM is its thermal stability. Therefore, the influence of annealing at different temperatures (573, 873, 1273, 1373 and 1673 K) on the stability of phases, composition and microstructure of 316L stainless steel fabricated by using the stripe with contour strategy has been investigated. Moreover, the changes induced by the heat treatment have been used to understand the corresponding variations of the mechanical properties of the specimens under tensile loading. Annealing has no effect on phase formation: a single-phase austenite is observed in all specimens investigated here. In addition, annealing does not change the random crystallographic orientation observed in the as-synthesized material. The complex cellular microstructure with fine subgrain structures characteristic of the as-SLM specimens is stable up to 873 K. The cell size increases with increasing annealing temperature until the cellular microstructure can no longer be observed at high temperatures (T ≥ 1273 K). The strength of the specimens decreases with increasing annealing temperature as a result of the microstructural coarsening. The excellent combination of strength and ductility exhibited by the as-synthesized material can be ascribed to the complex cellular microstructure and subgrains along with the misorientation between grains, cells, cell walls and subgrains. With the aim of further improving the mechanical behaviour of 316L steel, this works examines the effect of hard second-phase particles on microstructure and related mechanical properties. For this, a composite consisting of a 316L steel matrix and 5 vol.% CeO2 particles was fabricated by SLM. The SLM parameters leading to a defect-free 316L matrix are not suitable for the production of 316L/CeO2 composite specimens. However, highly-dense composite samples can be synthesized by carefully adjusting the laser scanning speed, while keeping the other parameters constant. The addition of the CeO2 reinforcement does not alter phase formation, but it affects the microstructure of the composite, which is significantly refined compared with the unreinforced 316L material. The refined microstructure induces significant strengthening in the composite without deteriorating the plastic deformation. The analysis of the effect of a second phase is continued by investigating how TiB2 particles influence the microstructure and mechanical properties of a 316L stainless steel synthesized by selective laser melting. The complex cellular microstructure with fine subgrains characteristic of the unreinforced 316L matrix is found in all samples. The addition of the TiB2 particles reduces significantly the sizes of the grains and cells. Furthermore, the TiB2 particles are homogeneously dispersed in the 316L matrix and they form circular precipitates with sizes around 50-100 nm along the grain boundaries. These microstructural features induce significant strengthening compared with the unreinforced 316L specimens. These findings prove that SLM can be successfully used to synthesize 316L stainless steel matrix composites with overall superior mechanical properties in comparison with the unreinforced 316L steel matrix. This might help to extend the use of SLM to fabricate steel matrix composites for automotive, aerospace and numerous other applications.
2

3-D Printing, Characterizing and Evaluating the Mechanical Properties of 316L Stainless Steel Materials with Gradient Microstructure

Stephen, Juanita Peche 24 March 2021 (has links)
Making gradient in the microstructure of metals is proven to be a superior method for improving their mechanical properties. In this research, we 3D print, characterize and evaluate the mechanical properties of 316L Stainless Steel with a gradient in their microstructure. During 3D printing, the gradient in the microstructure is created by tailoring the processing parameters (hatch spacing, scanning speed, and laser power and scanning speed) of the Selective Laser Melting (SLM). The Materials with Graded Microstructure (MGMs) are characterized by optical and scanning electron microscopy (SEM). Image processing framework is utilized to reveal the distribution of cells and melt pools shapes and sizes in the volume of the material when the processing parameters change. It is shown that the laser power, scanning speed and the hatch spacing have a more significant effect on the size and shape of cells and melt pools compared to the speed. Multiple Dog bones are 3D printed with a microstructure that has smaller features (cells and melt polls) at the edges of the structure compared to the center. Tensile and fatigue tests are performed and compared for samples with constant and graded microstructures. / Master of Science / The mechanical performance of Selective Laser Melting (SLM) fabricated materials is an important topic in research. Strengthening the performance of these materials can be achieved through implementing a gradient within the microstructure, referred to as Materials with Graded Microstructure (MGMs). A complicated microstructure can weaken the microstructure, and this can be resolved by optimizing the microstructure during SLM 3D printing, in which the processing parameters are tailored. In this study, the mechanical properties of these MGMs were characterized and evaluated. The gradient in these materials were created by modifying SLM process parameters (scanning speed, hatch spacing, and laser power and scanning speed) during the build. Optical and scanning electron microscopy (SEM) was used to characterize these the microstructure of these MGMs, and image processing was used to examine the distribution of cells and melt pools characteristics throughout the region where the processing parameters changed. This investigation shows that laser power, scanning speed, and hatch spacing have a direct effect on the size and shape of the cells and melt pools, compared to scanning speed, which shows an effect on melt pools. Dog bone structures are 3-D printed with a graded microstructure that has small cells and melt pools at the edges, compared to the center, by changing the laser power and scanning speed. Tensile and fatigue analysis are performed and compared for samples with constant and graded microstructures, which reveal that the mechanical properties of the MGMs perform similar to the parameter at the edges, but differently in fracture mechanics.

Page generated in 0.0851 seconds