• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 18
  • 10
  • 7
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 163
  • 23
  • 19
  • 18
  • 17
  • 17
  • 16
  • 16
  • 14
  • 14
  • 14
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Cross-Scatter in Dual-Cone X-ray Imaging: Magnitude, Avoidance, Correction, and Artifact Reduction

Giles, William January 2012 (has links)
<p>Onboard cone beam computed tomography (CBCT) has become a widespread means of three-dimensional target localization for radiation therapy; however, it is susceptible to metal artifacts and beam-hardening artifacts that can hinder visualization of low contrast anatomy. Dual-CBCT provides easy access to techniques that may reduces such artifacts. Additionally, dual-CBCT can decrease imaging time and provide simultaneous orthogonal projections which may also be useful for fast target localization. However, dual-CBCT will suffer from large increases in scattered radiation due to the addition of the second source.</p><p>An experimental bench top dual CBCT system was constructed so that each imaging chain in the dual CBCT system mimics the geometry of gantry-mounted CBCT systems commonly used in the radiation therapy room. The two systems share a common axis of rotation and are mounted orthogonally. Custom control software was developed to ensure reproducible exposure and rotation timings. This software allows the implementation of the acquisition sequences required for the cross scatter avoidance and correction strategies studied.</p><p>Utilizing the experimental dual CBCT system cross scatter was characterized from 70-145 kVp in projections and reconstructed images using this system and three cylindrical phantoms (15cm, 20cm, and 30cm) with a common Catphan core. A novel strategy for avoiding cross-scatter in dual-CBCT was developed that utilized interleaved data acquisition on each imaging chain. Contrast and contrast-to-noise-ratio were measured in reconstructions to evaluate the effectiveness of this strategy to avoid the effects of cross scatter.</p><p>A novel correction strategy for cross scatter was developed wherein the cross scatter was regularly sampled during the course of data acquisition and these samples were used as the basis for low- and high- frequency corrections for the cross-scatter in projections. The cross scatter sampling interval was determined for an anthropomorphic phantom at three different sites relevant to radiation therapy by estimating the angular Nyquist frequency. The low frequency portion of the cross scatter distribution is interpolated between samples to provide an estimate of the cross scatter distribution at every projection angle and was then subtracted from the projections.</p><p>The high-frequency portion of the correction was applied after the low-frequency correction was applied. The novel high-frequency correction utilizes the fact that a direct estimate of the high-frequency components was obtained in the cross scatter samples. The high-frequency components of the measured cross scatter were subtracted from the projections in the Fourier domain, a process referred to as spectral subtraction. Each projection is corrected using the cross scatter sample taken at the closest projection angle. In order to apply this correction in the Fourier domain the high-frequency component of the cross scatter must be approximately stationary. To improve the stationarity of the high-frequency cross scatter component a novel two-dimensional, overlapping window was developed. The spectral subtraction was then applied in each window and the results added to form the final image.</p><p>The effectiveness of the correction techniques were evaluated by measuring the contrast and contrast-to-noise-ratio in an image quality phantom. Additionally, the effect of the high-frequency correction on resolution was measured using a line pair phantom.</p><p>Cross scatter in dual CBCT was shown for large phantoms to be much higher than forward scatter which has long been known to be one of the largest degrading factors of image quality in CBCT. This results in large losses of contrast and CNR in reconstructed images. The interleaving strategy for avoiding cross scatter during projection acquisition showed similar performance to cross scatter free acquisitions, however, does not acquire projections at the maximum possible rate. For those applications in which maximizing the acquisition rate of projections is important, the low- and high-frequency corrections effectively mitigated the effects of cross scatter in the dual CBCT system.</p> / Dissertation
22

The Development and Validation of a First Generation X-Ray Scatter Computed Tomography Algorithm for the Reconstruction of Electron Density Breast Images Using Monte Carlo Simulation

Alpuche Aviles, Jorge Edmundo 21 March 2011 (has links)
Breast CT is a promising modality whose inherent scatter could be used to reconstruct electron density (rho_e) images. This has led us to investigate the benefits of reconstructing linear attenuation coefficient (mu) and (rho_e) images of the breast. First generation CT provides a cost-effective and simple approach to reconstruct (rho_e) images in a laboratory but is limited by the anisotropic probability of scatter, attenuation, noise and contaminating scatter (coherent and multiple scatter). These issues were investigated using Monte Carlo (MC) simulations of a first generation breast scatter enhanced CT (B-SECT) system. A reconstruction algorithm was developed for the B-SECT system and is based on a ring of detectors which eliminates the scatter dependence on the relative position of the scattering centre. The algorithm incorporates an attenuation correction based on the (mu) image and was tested against analytical and MC simulations. MC simulations were also used to quantify the dose per scan. The ring measures a fraction of the total single incoherent scatter which is proportional to ray integrals of (rho_e) and can be quantified even when electron binding is non negligible. The algorithm typically reconstructs accurate (rho_e) images using a single correction for attenuation but has the capability for multiple iterations if required. MC simulations show that the dose coefficients are similar to those of cone beam breast CT. Coherent and multiple scatter can not be directly related to (rho_e) and lead to capping artifacts and overestimated (rho_e) by a factor greater than 2. This issue can be addressed using empirical corrections based on the radiological path of the incident beam and result in (rho_e) images of breast soft tissue with 1% accuracy, 3% precision and a mean glandular dose of 4 mGy for a 3D scan. The reconstructed (rho_e) image was more accurate than the (rho_e) estimate derived from the (mu) image. An alternative correction based on the thickness of breast traversed by the beam provides an enhanced contrast image reflecting the breast scatter properties. These results demonstrate the feasibility of detecting small (rho_e) changes in the intact breast and shows that further experimental evaluation of this technique is warranted.
23

The Development and Validation of a First Generation X-Ray Scatter Computed Tomography Algorithm for the Reconstruction of Electron Density Breast Images Using Monte Carlo Simulation

Alpuche Aviles, Jorge Edmundo 21 March 2011 (has links)
Breast CT is a promising modality whose inherent scatter could be used to reconstruct electron density (rho_e) images. This has led us to investigate the benefits of reconstructing linear attenuation coefficient (mu) and (rho_e) images of the breast. First generation CT provides a cost-effective and simple approach to reconstruct (rho_e) images in a laboratory but is limited by the anisotropic probability of scatter, attenuation, noise and contaminating scatter (coherent and multiple scatter). These issues were investigated using Monte Carlo (MC) simulations of a first generation breast scatter enhanced CT (B-SECT) system. A reconstruction algorithm was developed for the B-SECT system and is based on a ring of detectors which eliminates the scatter dependence on the relative position of the scattering centre. The algorithm incorporates an attenuation correction based on the (mu) image and was tested against analytical and MC simulations. MC simulations were also used to quantify the dose per scan. The ring measures a fraction of the total single incoherent scatter which is proportional to ray integrals of (rho_e) and can be quantified even when electron binding is non negligible. The algorithm typically reconstructs accurate (rho_e) images using a single correction for attenuation but has the capability for multiple iterations if required. MC simulations show that the dose coefficients are similar to those of cone beam breast CT. Coherent and multiple scatter can not be directly related to (rho_e) and lead to capping artifacts and overestimated (rho_e) by a factor greater than 2. This issue can be addressed using empirical corrections based on the radiological path of the incident beam and result in (rho_e) images of breast soft tissue with 1% accuracy, 3% precision and a mean glandular dose of 4 mGy for a 3D scan. The reconstructed (rho_e) image was more accurate than the (rho_e) estimate derived from the (mu) image. An alternative correction based on the thickness of breast traversed by the beam provides an enhanced contrast image reflecting the breast scatter properties. These results demonstrate the feasibility of detecting small (rho_e) changes in the intact breast and shows that further experimental evaluation of this technique is warranted.
24

Effect of Slit Scan Imaging Techniques on Image Quality in Radiotherapy Electronic Portal Imaging

Walton, Dean R. 12 November 2008 (has links)
No description available.
25

Analytic 3D Scatter Correction in Pet Using the Klein-Nishna Equation

Bowen, Christopher V. 11 1900 (has links)
In order to perform quantitative 3D positron tomography, it is essential that an accurate means of correcting for the effects of Compton scattered photons be developed. The two main approaches to compensate for scattered radiation rely on energy considerations or on filtering operations. Energy based scatter correction methods exploit the reduced energy of scattered photons to differentiate them from unscattered photons. Filtered scatter correction methods require the measurement of scatter point spread functions to be used for convolution with the acquired emission data set. Neither approach has demonstrated sufficient accuracy to be applied in a clinical environment. In this thesis, I have developed the theoretical framework for generating the scatter point spread functions for the general case of any source position within any nonuniform attenuation object. This calculation is based on a first principles approach using the Klein-Nishina differential cross section for Compton scattering to describe the angular distribution of scatter annihilation photons. The attenuation correction factors from transmission scans are included within the theory as inputs describing the distribution of matter in the object being imaged. The theory has been tested by comparison with experimental scatter profiles of point sources which are either centered, or off-center in water-filled cylinders. Monte Carlo simulations have been used to identify the detector energy threshold where the single scatter assumption employed by the theory is most satisfied. The validity of a mean scatter position assumption, used in the development of the theory, is tested using analytic calculations of a non-uniform attenuation phantom. The physical effects most responsible for determining the shape of the scatter profiles, as well as the assumptions employed by several common scatter correction methods, are revealed using the analytic scatter correction theory. / Thesis / Master of Science (MS)
26

Smartphone Detection of UV LED-Enhanced Particle Immunoassay on Paper Microfluidics

Park, Tu San, Cho, Soohee, Nahapetian, Tigran G., Yoon, Jeong-Yeol 02 1900 (has links)
Use of a smartphone as an optical detector for paper microfluidic devices has recently gained substantial attention due to its simplicity, ease of use, and handheld capability. Utilization of a UV light source enhances the optical signal intensities, especially for the particle immunoagglutination assay that has typically used visible or ambient light. Such enhancement is essential for true assimilation of assays to field deployable and point-of-care applications by greatly reducing the effects by independent environmental factors. This work is the first demonstration of using a UV LED (UVA) to enhance the Mie scatter signals from the particle immunoagglutination assay on the paper microfluidic devices and subsequent smartphone detection. Smartphone's CMOS camera can recognize the UVA scatter from the paper microfluidic channels efficiently in its green channel. For an Escherichia coli assay, the normalized signal intensities increased up to 50% from the negative signal with UV LED, compared with the 4% to 7% with ambient light. Detection limit was 10 colony-forming units/mL. Similar results were obtained in the presence of 10% human whole blood.
27

VHF Boundary Layer Radar and RASS

MacKinnon, Andrew David January 2001 (has links)
This thesis describes the refinements, modifications and additions to a prototype Very High Frequency (VHF) Boundary Layer (BL) Spaced Antenna (SA) radar initially installed at the University of Adelaide's Buckland Park field site in 1997. Previous radar observations of the lowest few kilometres of the atmosphere, in particular the Atmospheric Boundary Layer, have used Ultra-High Frequency (UHF) radars. Unlike VHF radars, UHF radars are extremely sensitive to hydro-meteors and have difficulty in distinguishing clear-air echoes from precipitation returns. The advantages and requirements of using a VHF radar to observe the lowest heights is discussed in conjunction with some of the limitations. The successful operation of the system over long periods has enabled in-depth investigation of the performance of the system in a variety of conditions and locations. Observations were made from as low as 300m and as high as 8 km, dependent upon conditions. Comparisons between the radar and alternative wind measuring devices were carried out and examined. The antenna system of the radar is a critical component which was analysed in depth and subsequently re-designed. Through the use of numerical models and mea- surements, evaluation of different designs was accomplished. Further calibration of the remaining components of the full system has enabled estimations of the absolute received power. Additional parameters which can be derived with a calibrated radar were compared with values obtained by other authors, giving favourable results. Full Correlation Analysis (FCA) is the predominant technique used in this work. A brief discussion of the background theory and parameters which can be measured is described. A simple one-dimensional model was developed and combined with a 'radar backscatter model' to investigate potential sources of errors in the parameters determined using FCA with the VHF Boundary Layer Radar. In particular, underes- timations in the wind velocity were examined. The integration of a Radio Acoustic Sounding System (RASS) to obtain tempera- ture profiles is discussed. The theory of RASS measurements including the limitations and considerations which are required for the VHF BL radar are given. The difficulties encountered trying to implement such a system and the subsequent success using a Stratospheric Tropospheric (ST) Profiler in place of the BL radar is presented. Taken as a whole this thesis shows the success of the VHF BL to obtain mea- surements from as low as 300m. The validation of this prototype radar provides an alternative and, in certain situations, a superior device with which to study the lower troposphere. / Thesis (Ph.D.)--Department of Physics and Mathematical Physics, 2001.
28

The Effects of Large Terrestrial Mammals on Seed Fates, Hoarding, and Seedling Survival in a Costa Rican Rain Forest

Kuprewicz, Erin Kathleen 07 May 2010 (has links)
Terrestrial mammals affect numerous aspects of plant demography, colonization, and community structure in Neotropical forests. Granivorous mammals destroy seeds via seed predation and seedlings through herbivory, negatively affecting plant fitness. Mammals can also positively affect plants by dispersing or hoarding seeds. Seed fate outcomes are contingent on the interaction between mammal seed handling strategies and the intrinsic anti-predation defenses possessed by seeds. In field experiments at La Selva Biological Station, I investigated how collared peccaries (Pecari tajacu) and Central American agoutis (Dasyprocta punctata) affect five species of large seeds that have various defenses against predation. Overall, peccaries consumed and killed most non-defended and chemically-defended seeds but they could not destroy seeds with physical defenses. Agoutis killed non-defended and physically-defended seeds, but not seeds with chemical defenses. Using seeds of Mucuna holtonii, I investigated how chemical and structural defenses deter mammal and insect seed predation respectively. I also determined how endosperm removal by invertebrates affects seed germination and seedling biomass. Chemical defenses protected seeds from rodents, but not ungulates that digest seeds via pregastric fermentation. Physical defenses protected seeds from invertebrate seed predators, and removal of endosperm negatively affected both seed germination and seedling growth. To determine how scatter-hoarding by agoutis affects seed escape from seed predators, germination, and seedling growth, I created simulated agouti hoards. I also investigated how mammals affect young seedling survival. Hoarding enhanced seed survival, germination, and seedling growth for most species of seeds. Terrestrial mammals killed some seedlings via seed predation rather than by herbivory. Overall, large mammal activity in La Selva negatively affected seed and seedling survival and this likely influences many aspects of forest dynamics.
29

Studies of the optoelectronic properties of polymer dispersed blue-phase liquid-crystal films

Wang, Yun-Ya 29 August 2012 (has links)
In this study, we study polymer-dispersed blue-phase liquid-crystal (PDBPLC)films. The PDBPLC film is fabricated by using BPLC instead of nematic LC in a PDLC film. The experimental results show that the PDBPLC films and can be switchable as the conventional PDLC. The polymer morphology of the PDBPLC is affected by the concentration of monomer in the BPLC/monomer mixture. The PDBPLC exhibits a good contrast ratio with monomer concentration of 39.17 wt%. The rise time of PDBPLC films decreases as the polymer concentration increases. Moreover, the results also show that a complete phase separation occurs with the exposure time of 20 minutes. For the future work, we will improve the high driving voltage and low ratio of the PDBPLC film.
30

Performance Improvement of ED at VGH Using Simulation and Optimization

Zhao, Yuancheng 15 September 2013 (has links)
Emergency department(ED) is one of the busiest clinical units in Winnipeg Victoria Gen-eral Hospital (VGH) which faces the challenge of patients’ long waiting-time as increas-ing healthcare demand and limited resources. This research investigates the critical factors of the ED operation to enhance the operational efficiency using simulation modeling and optimization. The contribution of this research is the integration of simulation and optimization for the performance improvement of ED operations. Discrete-events simula-tion (DES) methodology provides a cost-effective tool to analyse the performance of the ED operations and evaluates the potential alternatives. Design of experiments (DOE) and Scatter search (SS) of model optimization are proposed to search the ED potential capaci-ty for waiting-time reduction. The patient-flow is accelerated along with the waiting-time reduction, which results in better efficient patient throughput in the ED. A specific strate-gy is suggested to improve the ED operation based on the simulation model.

Page generated in 0.0358 seconds