• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Macrocycles, macrobicycles : a study

Marrs, Deborah Jane January 1990 (has links)
No description available.
2

Studies of Titanium(IV)complexes of mixed nitrogen and oxygen donor macrocycles and related schiff base ligands

Bowman, Gary Raymond, University of Western Sydney, College of Science, Technology and Environment, School of Science, Food and Horticulture January 2002 (has links)
This work investigated the use of large tetradentate mixed nitrogen and oxygen donor macrocycles as potential ligands for titanium(IV).These large ligands are capable of encapsulating the metal ion, thereby protecting it from reacting further. In addition, titanium complexes of this type had not been reported previously.Molecular modelling was utilised to evaluate and predict the coordinating potential of the macrocycles investigated.An alternative synthetic strategy was needed to achieve coordination complexes with titanium. This involved the use of a benzene based solvent system and rigorously dry reaction conditions.The final part of the work involved a detailed study of the kinetics of the hydrolysis of the titanium complexes investigated. / Doctor of Philosophy (PhD)
3

Modificações oxidativas em proteínas em presença de complexos de cobre(II) / Oxidative modifications in proteins in the presence of copper(II) complexes

Abbott, Mariana Pedrinha 28 September 2007 (has links)
Neste trabalho alguns complexos diimínicos de cobre(II) com ligantes do tipo base de Schiff, já estudados em nosso laboratório, além de um novo complexo de zinco foram sintetizados e caracterizados por análise elementar, espectroscopias UV/Vis, Infravermelho e de Ressonância Paramagnética Eletrônica (EPR). Estudos sobre a reatividade destes complexos de cobre(II) frente à oxidação de carboidratos por oxigênio molecular foram então realizados. Estes estudos envolveram várias etapas, com variação das concentrações do catalisador, do substrato e do tampão e variação do pH, verificando-se a influência de cada um destes fatores na cinética de reação. Para tentar entender a interação da albumina bovina (BSA) com os complexos diimínicos de cobre(II) estudados, foram realizados experimentos utilizando-se a técnica de dicroísmo circular e espectroscopia eletrônica. A estabilidade termodinâmica relativa dos vários compostos foi assim determinada, estimando-se os respectivos valores das constantes de estabilidade. Experimentos sobre a atividade oxidante destes complexos frente à albumina bovina, causando danos oxidativos à proteína, também foram efetuados, determinando-se a formação de grupos carbonil na proteína, que foram monitorados espectrofotometricamente, através da obtenção das correspondentes dinitrofenil-hidrazonas, pela reação com dinitrofenil-hidrazina (DNPH). Através da técnica de EPR, foram realizados estudos para a detecção e identificação de espécies radicalares na interação da albumina com os complexos de cobre(II) em presença de peróxido de hidrogênio, com o uso de um captador de spin apropriado. Estudos sobre as possíveis interações dos complexos de cobre(II) com a albumina humana (HSA) e com o plasma sanguíneo foram realizados através das técnicas de EPR e SDS-PAGE. Além disso, a reatividade dos complexos de cobre(II) frente a glutationa, um agente redutor presente em alta concentração no citosol, foi investigada através de experimentos de fluorescência. Finalmente, a influência dos complexos imínicos de cobre(II) sobre a respiração mitocondrial foi investigada, já que estes complexos se mostraram indutores eficientes de apoptose frente a diferentes células tumorais. Para este estudo utilizou-se um oxígrafo para monitorar o consumo de oxigênio durante a respiração mitocondrial, em presença dos complexos de cobre estudados. / In this work some copper(II) complexes with Schiff base ligands, already studied in our laboratory, have been prepared, as well as a new similar zinc complex. After being characterized, especially by spectroscopic techniques (UV/Vis, IR, and EPR), these complexes had their reactivity as catalysts for the oxidation of carbohydrates by molecular oxygen verified. The influence of different factors on the kinetics of reaction, such as variation of the catalyst concentration, substrate concentration, buffer concentration and pH of the solution, was investigated. In order to understand the possible interactions of the copper(II) complexes studied with the protein albumine, studies using CD and electronic spectroscopies were carried out by adding the copper complexes to bovine serum albumine (BSA), and determining the corresponding relative stability constants for each complex. The activity of such copper complexes as oxidant agents toward the protein was also verified, with the formation of carbonyl groups in the protein observed by monitoring spectrophotometrically the corresponding dinitrophenylhydrazones, after reaction with dinitrophenylhydrazine (DNPH). By using EPR spectroscopy and an appropriate spin scavenger, reactive oxygen species were detected and identified as a result of the oxidative damage to the protein occurring in the presence of the copper complexes and hydrogen peroxide. Interactions of the human serum protein (HSA) and human plasma with the copper complexes studied were verified by EPR and SDS-PAGE techniques. Additionally, the reactivity of these complexes toward the reductive agent glutathione, present in the citosol at high concentration, was investigated by fluorescence measurements. Finally, the influence of the complexes in the mitochondrial respiration was verified, since those compounds are able to induce efficiently apoptosis in the presence of different tumoral cells, monitoring the oxygen consumption with a selective oxygen electrode
4

Modificações oxidativas em proteínas em presença de complexos de cobre(II) / Oxidative modifications in proteins in the presence of copper(II) complexes

Mariana Pedrinha Abbott 28 September 2007 (has links)
Neste trabalho alguns complexos diimínicos de cobre(II) com ligantes do tipo base de Schiff, já estudados em nosso laboratório, além de um novo complexo de zinco foram sintetizados e caracterizados por análise elementar, espectroscopias UV/Vis, Infravermelho e de Ressonância Paramagnética Eletrônica (EPR). Estudos sobre a reatividade destes complexos de cobre(II) frente à oxidação de carboidratos por oxigênio molecular foram então realizados. Estes estudos envolveram várias etapas, com variação das concentrações do catalisador, do substrato e do tampão e variação do pH, verificando-se a influência de cada um destes fatores na cinética de reação. Para tentar entender a interação da albumina bovina (BSA) com os complexos diimínicos de cobre(II) estudados, foram realizados experimentos utilizando-se a técnica de dicroísmo circular e espectroscopia eletrônica. A estabilidade termodinâmica relativa dos vários compostos foi assim determinada, estimando-se os respectivos valores das constantes de estabilidade. Experimentos sobre a atividade oxidante destes complexos frente à albumina bovina, causando danos oxidativos à proteína, também foram efetuados, determinando-se a formação de grupos carbonil na proteína, que foram monitorados espectrofotometricamente, através da obtenção das correspondentes dinitrofenil-hidrazonas, pela reação com dinitrofenil-hidrazina (DNPH). Através da técnica de EPR, foram realizados estudos para a detecção e identificação de espécies radicalares na interação da albumina com os complexos de cobre(II) em presença de peróxido de hidrogênio, com o uso de um captador de spin apropriado. Estudos sobre as possíveis interações dos complexos de cobre(II) com a albumina humana (HSA) e com o plasma sanguíneo foram realizados através das técnicas de EPR e SDS-PAGE. Além disso, a reatividade dos complexos de cobre(II) frente a glutationa, um agente redutor presente em alta concentração no citosol, foi investigada através de experimentos de fluorescência. Finalmente, a influência dos complexos imínicos de cobre(II) sobre a respiração mitocondrial foi investigada, já que estes complexos se mostraram indutores eficientes de apoptose frente a diferentes células tumorais. Para este estudo utilizou-se um oxígrafo para monitorar o consumo de oxigênio durante a respiração mitocondrial, em presença dos complexos de cobre estudados. / In this work some copper(II) complexes with Schiff base ligands, already studied in our laboratory, have been prepared, as well as a new similar zinc complex. After being characterized, especially by spectroscopic techniques (UV/Vis, IR, and EPR), these complexes had their reactivity as catalysts for the oxidation of carbohydrates by molecular oxygen verified. The influence of different factors on the kinetics of reaction, such as variation of the catalyst concentration, substrate concentration, buffer concentration and pH of the solution, was investigated. In order to understand the possible interactions of the copper(II) complexes studied with the protein albumine, studies using CD and electronic spectroscopies were carried out by adding the copper complexes to bovine serum albumine (BSA), and determining the corresponding relative stability constants for each complex. The activity of such copper complexes as oxidant agents toward the protein was also verified, with the formation of carbonyl groups in the protein observed by monitoring spectrophotometrically the corresponding dinitrophenylhydrazones, after reaction with dinitrophenylhydrazine (DNPH). By using EPR spectroscopy and an appropriate spin scavenger, reactive oxygen species were detected and identified as a result of the oxidative damage to the protein occurring in the presence of the copper complexes and hydrogen peroxide. Interactions of the human serum protein (HSA) and human plasma with the copper complexes studied were verified by EPR and SDS-PAGE techniques. Additionally, the reactivity of these complexes toward the reductive agent glutathione, present in the citosol at high concentration, was investigated by fluorescence measurements. Finally, the influence of the complexes in the mitochondrial respiration was verified, since those compounds are able to induce efficiently apoptosis in the presence of different tumoral cells, monitoring the oxygen consumption with a selective oxygen electrode
5

Serendipitous Assembly Of 3d Metal-Ion Polyclusters : Structures, Magnetic Behavior And Theoretical Studies

Mukherjee, Sandip 07 1900 (has links) (PDF)
The last two decades have seen extensive growth in interest in metal-ion assemblies, especially for building new polynuclear exchange-coupled magnetic systems. However, the concept of designing polynuclear extended structures has still not matured to the level of retro-synthetic approach developed for the organic and pharmacological molecules. Although some progress has been made with secondary building units (SBUs) in metal-organic-frameworks (MOFs), the control seems to be just an illusion when it comes to bridging ligands such as the azide ion. When it is asserted that the azido ligand is versatile in its bridging capabilities, what is actually meant is that it would be difficult to predict or control its bridging properties, or in other words, the azido based polynuclear complexes are difficult to pre-design. However, this kind of serendipity is not always bad news for the chemists. For example, the azido ligand has been shown to mediate magnetic exchanges between paramagnetic metals in a predictable fashion (usually depending upon the bonding geometries). Therefore, it is a well-respected ligand in polynuclear assemblies of paramagnetic ions. Serendipitous assemblies offer new magnetic structures that we may not otherwise even think about synthesizing. Similarly, there are other ligands, such as alkoxido, oximato, carboxylato etc. which also behave like azide. These ligands are very important in the study of magnetic exchanges to develop an understanding of the underlying mechanisms in molecular magnetism. Serendipitous assemblies have also led to systems like single molecule magnets (SMMs), which have enriched the field with potential applications in computing and have also been used for the confirmation of the quantum magnetic properties like tunneling phenomenon, spin decoherence etc. Investigations incorporated in this thesis work led to several novel strategies for using serendipity as an advantage and build unprecedented structural topologies with interesting new molecular-magnetic properties. All the reported complexes were thoroughly analyzed through elemental analysis, spectroscopy, X-ray structure determination (both single crystal & powder diffractions) and variable temperature magnetic susceptibility measurements. In a few suitable cases, model structures obtained from the X-ray structures were also employed to study the magnetic exchange mechanisms through density functional theory (DFT) calculations and simulations. CHAPTER 1 of the thesis presents a general review on the ever-growing field of metal-ion assembly. In particular, the importance of the ‘serendipitous approach’ to build new and interesting metal-ion clusters and polyclusters is highlighted. This chapter also describes the basic concepts of exchange-based molecular magnetism as applied to the metal-ion assemblies. CHAPTER 2 describes the concept of using lower molar proportions of blocking bidentate chelating ligands in the neutral copper(II)-azido systems, which increases the number of coordination sites for the versatile azido bridges to assemble the metal-ions in higher dimensions, based on smaller cluster units. Syntheses, structures and magnetic properties of ten novel complexes are described in this chapter: [Cu3(tmen)2(N3)6]n (1), [Cu4(Me-hmpz)2(N3)8]n (2), [Cu4(men)2(N3)8]n (3), [Cu6(deen)2(N3)12]n (4), [Cu6(aem)2(N3)12]n (5), [Cu6(dmeen)2(H2O)2(N3)12]n (6), [Cu6(N,N'-dmen)2(N3)12]n (7), [Cu6(hmpz)2(N3)12]n (8), Cu5(N,N-dmen)2(N3)10]n (9), and [Cu5(N,N'-dmen)5(N3)10]n (10) [tmen = N,N,N',N'-tetramethylethylenediamine, Me-hmpz = 1-methylhomopiperazine, men = N-methylethylenediamine, deen = N,N'-diethylethylenediamine, aem = 4-(2-aminoethyl)morpholine, dmeen = N,N-dimethyl-N'-ethylethylenediamine, N,N'-dmen = N,N'-dimethylethylenediamine, hmpz = homopiperazine, N,N-dmen = N,N-dimethylethylenediamine]. Most of these complexes have simple oligonuclear basic building units (Scheme 1), such as trinuclear (1), tetranuclear (2, 3) and hexanuclear (4-8), but the overall arrangements of these cluster units in higher dimensions vary widely and serendipitously. For example, the hexanuclear complexes 4-7, although having almost identical basic structures, assemble in three- (4, 5) or two- (6, 7) dimensions with different connectivity among the basic structures. However, complex 9 is made from two different building units (Cu2 and Cu3). Complex 10, although having metal to blocking molar ratio 1:1, presents an unprecedented 1D structure for such complexes. Analysis of the magnetic susceptibility data for complexes 1-9 using theoretical exchange models for fitting is also described. Density functional theory (DFT, B3LYP) was employed to further analyze the experimental magnetic data for complexes 1, 2, 3 and 9 to better understand the magnetic exchange mechanisms in such systems. CHAPTER 3 continues with the same concepts developed in the previous chapter using multidentate neutral and anionic co-ligands. Using lower molar proportions of these multidentate ligands, seven novel complexes have been synthesized (keeping the initial metal to ligand ratio as 2:1): [Cu4(L1)2(N3)8]n (11), [Cu4(L2)2(N3)8]n (12), [Cu4(L3)2(N3)8]n (13), [Cu4(L4)2(N3)8]n (14), [Cu9(L5)4(N3)18]n (15), [Cu4(L6)2(H2O)2(N3)6] (16) and [Cu4(L7)2(N3)6]n (17) [where L1-5 are the condensation products of 2-pyridinecarboxaldehyde and 2-{2-(methylamino)ethyl}pyridine (L1), N,N-diethylethylenediamine (L2), N,N-dimethylethylenediamine (L3), N-methylethylenediamine (L4), N,N,2,2-tetramethylpropanediamine (L5); HL6 and HL7 are the condensation products of 2-hydroxy-3-methoxybenzaldehyde with N,N-diethylethylenediamine (HL6), and N-ethylethylenediamine (HL7)]. The ligand L1 is particularly interesting, as it is a hemiaminal ether (usually considered to be unstable intermediates in the reactions of aldehydes and secondary amines in alcoholic solvents), and was found to be trapped in 11. Although 11-13 have identical tetranuclear basic structures (with the rare simultaneous end-on and end-to-end bridges between two neighbouring metal-ions, Scheme 2) and extend in one-dimension. However, 13 is differently organized from the other two complexes. For 14, the bridging structure among the peripheral copper(II) ions changes to double end-on (Scheme 2), and the resulting structure extends in two dimensions. However, with L5, metal to ligand ratio is 9:4 (under similar conditions and initial molar proportions of the components) in 15, which can be seen as two different fragments: [Cu4(L5)4(N3)6]2+ and [Cu5(N3)12]2- linked alternately to give an overall 1D structure. HL6 and HL7 have one ionisable phenolic group that replaces one azido anion and generates two pockets for the metal atoms. These monoanionic ligands give tetranuclear complexes (16 and 17) with basic structures resembling (Scheme 2) to 11-14. While 17 is 1D in nature, two coordinated water molecules prevent the structure of 16 to grow and results in a discrete cluster. The variable temperature magnetic properties of these complexes were thoroughly analyzed through experimental and theoretical (DFT) studies. CHAPTER 4 reports the use of a pyridyl substituted propanediolate ligand in the assembly of two novel 1D heterometallic complexes: [Mn3Na(L)4(CH3CO2)(MeOH)2](ClO4)2∙3H2O (18) and [Mn3Na(L)4(CH3CH2CO2)(MeOH)2](ClO4)2∙2MeOH∙H2O (19) [LH2 = 2-methyl-2-(2-pyridyl)propane-1,3-diol, Scheme 3]; both featuring octahedral MnIV ions linked alternately to one trigonal prismatic MnII ion and even more interestingly to one trigonal prismatic NaI ion (Scheme 3). The complexes are essentially identical in structure and magnetic behavior, showing a weak ferromagnetic interaction among the neighboring manganese ions. DFT studies on a model complex supports the S = 11/2 ground spin state, deduced from dc and ac susceptibility measurements. CHAPTER 5 illustrates the use of a few dicarboxylates as potential bridging ligands to assemble tri- and hexanuclear MnIII-clusters. With the salicylaldoximate (salox) as the [MnIII3O(salox)3]+, triangle-generating moiety and keeping the reaction conditions (solvent, base, reaction time and crystallization process) identical, four new extended complexes that differ both in their basic and higher dimensional organizations are reported. When 1,3-phenylenediacetate (phda) is used (in EtOH), in the resulting complex [MnIII6O2(salox)6(EtOH)4(phda)]n∙(saloxH2)n∙(2H2O)n (20), a single type of MnIII6 clusters are linked by the dicarboxylate (interestingly the complex crystallizes with uncoordinated saloxH2 molecules). However, when two differently substituted isophthalate linkers (5-iodoisophthalate and 5-azidoisophthalate) are used, two almost identical complexes [MnIII6O2(salox)6(MeOH)5(5-I-isoph)]n∙(3MeOH)n (21) and [MnIII6O2(salox)6(MeOH)4(H2O)(5-N3-isoph)]n∙(4MeOH)n (22) are isolated, with two different types of Mn6 clusters (Scheme 4) linked alternately in one dimension. More interestingly, use of another substituted isophthalate (5-nitroisophthalate) produced a heteronuclear complex [MnIII3NaO(salox)3(MeOH)4(5-NO2-isoph)]n∙(MeOH)n(H2O)n (23) with only MnIII3 triangles as the basic cluster assembled in two dimensions. Temperature and field dependent dc and ac susceptibility measurements show that the complexes 20-22 behave as non-interacting single molecule magnets with ground spin state S = 4. Complex 23 is dominantly antiferromagnetic with a ground spin state S = 2. The magnetic behaviours of these complexes are also supported by theoretical calculations (DFT) on models generated from the crystal structures.

Page generated in 0.0491 seconds