Spelling suggestions: "subject:"schließzelle"" "subject:"schließzellen""
1 |
Untersuchungen und Simulationen zur Koordination der Ionenflüsse bei der Schliesszellbewegung in Vicia faba und Arabidopsis thalianaSteinmeyer, Ralf. Unknown Date (has links) (PDF)
Würzburg, University, Diss., 2006. / Erscheinungsjahr an der Haupttitelstelle: 2005.
|
2 |
Studies of CA 2+ -signaling and CL-conductance changes in response to abscisic acid, voltage changes and cold, in the plasma membrane of guard cellsLevchenko, Victor January 2009 (has links)
Würzburg, Univ., Diss., 2010. / Zsfassung in dt. Sprache.
|
3 |
Untersuchungen zur regulatorischen Phosphorylierung der Phosphoenolpyruvat Carboxylase in Schliesszellen /Meinhard, Michael. January 1999 (has links)
Thesis (doctoral)--Rheinische Friedrich-Wilhelms-Universität Bonn, 1999.
|
4 |
Studies of CA 2+ -signaling and CL-conductance changes in response to abscisic acid, voltage changes and cold, in the plasma membrane of guard cellsLevchenko, Victor January 2009 (has links) (PDF)
Land plants must control the transpiration water stream and balance it with carbon dioxide uptake for optimal photosynthesis. A highly specialized type of plant cell called guard cells have evolutionary appeared which are suited for this complicated purpose. Guard cells are located by pairs on aerated plant surface and form stomata – structural units, which represent highly regulated “watergate” (Roelfsema and Hedrich, 2005). Guard cells sense many environmental and internal plant-derived stimuli and by changing degree of their swelling tightly regulate diffusion of water vapor and other gases. Cell processes taking place in stomata during their movements had been a subject of intensive investigation for more than three decades (Schroeder et al., 2001; Assmann and Shimazaki, 1999). With use of electrophysiological technique the basic processes underlying stomatal movements were described (Thiel et al., 1992; Dietrich et. al., 2001; Roelfsema and Hedrich, 2005). Another set of questions arised between plant biologists is how the signals affecting stomatal aperture are transduced in guard cells starting from perception by receptor structures and ending on the osmodynamic motor components. Introduction of fluorescent microspectroscopy technique allowed to characterize some Ca2+ and H+-based signaling events, taking place in the cytoplasm during stomata function. Most of the processes, taking place in stomata were characterized in guard cell preparations, such as strips of isolated leaf epidermis or guard cell protoplasts, - cells with enzymaticaly digested cell walls. Some experimental observations although point that reactions of guard cells located in their natural environment, leaves of intact plants can differ from those could be registered in preparations. These deviations might be explained by the modulation of guard cell function by apoplastic factors originating from surrounding tissues like mesophyll or leaf epidermis (Roelfsema and Hedrich, 2002). On the other hand registration of physiological responses in prepared tissues may also contain possible artifacts, related to the preparation procedures. The aim of the experimental work presented here was to investigate the cell signaling events, taking place in guard cells upon plant stress hormone abscisic acid (ABA) and some other stimuli action. Abscisic acid is a compound that synthesized in plant roots upon drought and closes stomata in the leaf to prevent the plant organism from excessive water loss. Previous studies on guard cell of isolated epidermis and guard cell protoplasts showed, that ABA induces stomatal closure via activation of plasma membrane anion channels (Grabov et al., 1997; Pei et al, 1997). Anion channels are known to be activated by elevated 2 concentrations of cytoplasmic Ca2+ [Ca2+]cyt (Schroeder and Hagiwara, 1989; Hedrich et al., 1990). Application of Ca2+-sensitive fluorescent probes revealed [Ca2+]cyt increases in guard cells upon ABA action (McAinsh et al., 1990). This observation led to suggestion that [Ca2+]cyt directly participate in the transduction of ABA signal in guard cells. Although no direct evidences for co-occurrence of [Ca2+]cyt rises and following activation of anion channels upon ABA action was not presented until yet. Results of experimental work performed on intact Vicia faba, Commelina communis and Nicotiana plumbagnifolia plants showed that guard cells of intact plant leaves respond with transient activation of plasma membrane anion channels upon perception of ABA. Kinetics of the response is highly reproducible and seemed to be conserved between species. Although despite clear generation of anion current transients, no [Ca2+]cyt increases could be recorded with using fluorescent probe Fura-2 microinjected into the cytoplasm. Together with results of later study on intact Nicotiana tabacum guard cells, reported obligatory [Ca2+]cyt increases which were desynchronized with anion current transients (Marten et al., 2007b) this, may indicate that [Ca2+]cyt increases are not necessary component of ABA signal transduction pathway. Together with absence of the effect of cytoplasm-delivered Ca2+- mobilizing agents IP3, IP6 and NAADP on anion currents these data may suppose that role of [Ca2+]cyt in ABA signaling must be reassessed. Further interest represented characterization of [Ca2+]cyt signaling and homeostasis in intact guard cells comparing with those in prepared cells. Experiments revealed strong deviations in [Ca2+]cyt behavior between different measuring systems. While guard cells of intact plants were able to strictly maintain [Ca2+]cyt level upon experimental shifting of [Ca2+]cyt level in either direction of elevation or decrease, cells of isolated epidermis showed complete absence of such ability. Guard cell protoplasts showed even weaker [Ca2+]cyt regulation ability and were capable of low physiological [Ca2+]cyt levels maintaining only at depolarized membrane potentials. Apart to these differences, prepared guard cells showed also for-time less activation of anion currents by experimentally imposed [Ca2+]cyt increases. These data strongly suggest that registered in guard cell preparations [Ca2+]cyt signals may contain significant part of artifacts and must be carefully used for the building of models of guard cells signaling. Further experimental investigations are strongly required for understanding guard cell functioning, especially with relation of vacuoles participation. The experimental work was done by the author in the period from october 2001 until november 2004 under supervision of Professor Dr. Rainer Hedrich in laboratory of molecular plant physiology and biophysics at Julius-Maximillians University of Würzburg, Würz3 burg, Federal Republic of Germany. Scientific coordinator of the Ph. D. project is Dr. Max Robert Gustaaf Roelfsema, University of Würzburg. Most of experimental results, presented here (chapter III) are also published elsewhere (Roelfsema et al., 2004; Langer et al., 2004; Levchenko et al., 2005, 2008). Chapter I intend to shortly introduce the reader into the field of guard cell research and point out the current level of understanding regarding this branch of plant research. Special attention is given to description of guard cell ion channels, their function and regulation, including the mechanisms of Ca2+-, H+- and phosphorylation-based signaling. This section is preceded by a short history of guard cell research and explains the actuality of presented work. In chapter II experimental techniques, methods and data processing approaches, used in the presented work are described. Technique used for electrophysiological registrations on intact plant leaves were used before and described in more details by Roelfsema et al. (2001). Fluorescent microspectroscopy technique was for the first time applied to intact plant leaves in this work and described in more details including calibration of Fura-2 based measurements. Chapter III presents the major results of the experimental work. In chapter IV the experimental results are discussed and put into context with current knowledge of guard cell function knowledge. Finally, remarks on perspectives of guard cell signaling research are drawn. / Landpflanzen sind in der Lage ihren Transpirationsfluss durch das Xylem zu regulieren und so den Wasserverlust mit dem Kohlendioxidbedarf der Photosynthese abzugleichen. Zu diesem Zweck haben sich im Laufe der Evolution Schließzellen entwickelt, welche in der Lage sind, diese komplizierte Aufgabe zu erfüllen. Schließzellen befinden sich auf Oberflächen oberirdischer Pflanzenorgane, wo sie als Paar eine Pore, dem sogenannten Stoma bilden. Schließzellen sind in der Lage mehrere Signale aus der Umwelt und von benachbarten Pflanzen wahrzunehmen. Anhand dieser Signale wird die Porenöffnung durch Änderungen des Schwellungsgrads der beiden Schließzellen genau reguliert. Die intrazellulären Prozesse die während der Stomabewegungen in den Schließzellen stattfinden sind bereits seit Jahrhunderten ein intensiv bearbeitetes Forschungsgebiet. Mit Hilfe elektrophysiologischer Techniken konnten bereits einige für die Stomabewegung grundlegende Prozesse beschrieben worden. Trotzdem sind immer noch viele Fragen offen. Dazu zählen vor allem die Mechanismen, die zur Wahrnehmung verschiedener Signale der Regulierung des osmotischen Motors in Schließzellen führt. Die meisten Studien zur Signalweiterleitung wurden mit isolierten Schließzellpräparationen durchgeführt, wie z.B. Epidermisstreifen oder Schließzellprotoplasten. Obwohl einige Schließzell-spezifische Eigenschaften in diesen Präparationen erhalten bleiben, deuteten kürzlich experimentelle Ergebnisse auf Unterschiede zwischen Antworten isolierter Schließzellen und denen intakter Pflanzen hin. Diese Unterschiede könnten durch die von Mesophyll- oder Epidermiszellen freigesetzte apoplastische Faktoren bedingt sein. Das Ziel der experimentellen Arbeiten dieser Dissertation war die Charakterisierung des Schließzellsignalweges ausgehend vom pflanzlichen Stresshormon Abscisinsäure (ABA). ABA wird in der Wurzel bei Trockenstress synthetisiert und bewirkt den Stomaschluss, um übermäßigen Wasserverlust zu unterbinden. Bisherige Studien mit isolierten Schließzellen ergaben, dass ABA die Aktivität der Plasmamembran-ständigen Anionenkanäle erhöht. In diesem Zusammenhang wurde postuliert, dass eine Aktivierung des ABAabhängigen Anionenkanals durch eine Erhöhung der zytosolischen Ca2+ Konzentration ([Ca2+]zyt) ausgelöst wird. Anionkanäle werden durch Ca2+ stimuliert und ABA bewirkt eine Erhöhung der [Ca2+]zyt. Die Resultate dieser Arbeit mit Vicia faba, Commelina communis und Nicotiana plumbagnifolia haben gezeigt, dass Schließzellen in intakten Blättern mit einer transienten Aktivierung der Plasmamembran-ständigen Anionenkanäle auf ABA reagieren. Die sehr typische 5 Aktivierungskinetik dieser ABA-Antwort scheint evolutionär gut konserviert zu sein. Obwohl ABA große Anionenströme in Vicia faba Schließzellen auslösen konnte, wurden keine Änderungen der [Ca2+]zyt mit dem Ca2+-Fluoreszenzindikator Fura-2 aufgezeichnet. Diese Resultate zeigen, dass zumindest in Vicia faba Schließzellen, eine Erhöhung der [Ca2+]zyt keine essentielle Komponente des ABA-Signalweges ist. Dieses Ergebnis zeigt, dass vor allem die Rolle der [Ca2+]zyt im ABA-Signalwege neu bewertet werden muss. Vor allem mit dem Unfähigkeit in Kombination mit den drei tierischen Ca2+-mobilisierenden Signalstoffen, IP3, IP6 and NAADP, die Anionenkanalaktivität zu beeinflussen. In einem weiteren Experiment, wurden Ca2+-abhängige Signalmechanismen und die Ca2+–Homöostase in Schließzellen zwischen isolierten Zellen mit denen in intakten Pflanzen verglichen. Schließzellen in intakten Pflanzen waren in der Lage, die [Ca2+]zyt unabhängig von Änderungen des Plasmamembranpotentials auf ein konstantes Niveau zu halten, während Schließzellen in isolierten Epidermisstreifen diese Fähigkeit verloren hatten. In Präparationen mit Epidermisstreifen löste eine Hyperpolarisierung des Membranpotentials einen dauerhaften Anstieg der [Ca2+]zyt aus. In Schließzellprotoplasten war das Vermögen, die [Ca2+]zyt zu regulieren, noch stärker eingeschränkt. Diese Zellen konnten nur bei depolarisierenden Membranpotentialen eine stabile [Ca2+]zyt halten. Darüber hinaus war auch das Vermögen von ABA, die Anionenkanalaktivität zu erhöhen bei Schließzellen in Epidermisstreifen stark begrenzt. Die in dieser Dissertation präsentierten Ergebnisse legen nahe, dass die bisher gemessenen [Ca2+]zyt-Signale an isolierten Schließzellen mit Fehlern behaftet sind. Die Isolierungsprozedur beeinflusst die Eigenschaften der Schließzellen und Daten aus solchen Präparationen sollten deswegen sorgfältiger bei der Entwicklung von Modellen zu Schließzellsignalwegen betrachtet werden. Einer Neubewertung der Rolle des [Ca2+]cyt wird voraussichtlich auf die Beteiligung neuartiger Komponenten des ABA Signalwegs hinweisen. Eine dieser Komponenten könnte die Vakuole der Schließzellen sein. „Tracer-Flux“ Experimente mit radioaktiven Isotopen und Patch-Clamp Studien an isolierten Vakuolen deuteten bereits auf eine wichtige Rolle der Vakuole bei der Regulierung der Schließzellbewegungen hin. Zukünftige Studien an intakten Schließzellen sind notwendig um diese Funktion in weiteren Details aufzuklären
|
5 |
Biophysikalische Analyse und Rekonstitution des schnellen ABA-Signaltransduktionsweges aus Arabidopsis thaliana / Biophysical analysis and reconstitution of the fast ABA-signal transduction pathway in Arabidopsis thalianaScherzer, Sönke January 2012 (has links) (PDF)
In dieser Arbeit sollte zunächst die Frage geklärt werden, ob es sich bei SLAC1 um den S-typ Anionenkanal handelt, oder ob SLAC1 nur ein essentieller Bestandteil des Anionenkanals ist. Zur funktionellen Charakterisierung des per se inaktiven SLAC1 Proteins, wurde mit der Suche nach SLAC1-aktivierenden Interaktionspartnern begonnen. Zu diesem Zweck bediente man sich der Methode der bimolekularen Fluoreszenz Komplementation (BiFC) im heterologen Expressionssystem der Xenopus Oozyten. Da bereits die Abhängigkeit der Anionenströme in Schließzellen von De- und Phosphorylierungsereignissen bekannt war, galt Ca2+-abhängigen Kinasen der CPK Familie, ABA-aktivierten Kinasen der SnRK Familie und Phosphatasen des PP2C Typs eine besondere Aufmerksamkeit. Mitglieder dieser Familien wurden bereits mit der Regulation des Stomaschlusses in Verbindung gebracht. Bei diesen Experimenten zeigte sich, dass SnRK2.6 (OST1) und mehrere CPKs deutlich mit SLAC1 physikalisch interagierten. Als Folge dieser Interaktion in Oozyten konnten schließlich nach Koexpression von SLAC1 zusammen mit den interagierenden Kinasen typische S-Typ Anionenströme detektiert werden, wie man sie aus Patch-Clamp Experimenten an isolierten Schließzellprotoplasten kannte. Hierbei bewirkten die Kinasen OST1 und CPK23 die größte Anionenkanalaktivierung. Dieses Ergebnis wird durch die BIFC-Experimente gestützt, da OST1 und CPK23 die stärkste Interaktion zu SLAC1 zeigten. Die elektrophysiologische Charakterisierung der SLAC1-Ströme im heterologen Expressionssystem der Xenopus Oozyten in Kombination mit in vivo Patch-Clamp Untersuchungen wies SLAC1 eindeutig als den lange gesuchten S-Typ Anionenkanal in Arabidopsis Schließzellen aus. Somit ist die direkte S-Typ Anionenkanalaktivierung durch OST1 auf dem Kalzium- unabhängigen und durch CPKs auf dem Ca2+-abhängigen ABA-Signaltransduktionsweg gelungen. Bei der Spezifizierung der einzelnen Kalzium-Abhängigkeiten dieser Kinasen in Oozyten und in in vitro Kinase Assays konnten weiterhin unterschiedliche Affinitäten der CPKs zu Kalzium festgestellt werden. So vermittelten die schwach Kalzium-abhängigen CPK6 und CPK23 bereits ohne einen Anstieg der zytosolischen Kalziumkonzentratiom über das Ruheniveau hinaus schon die Anionenkanalaktivierung. Die stark Kalzium-abhängigen CPK3 und CPK21 hingegen, werden erst aktiv wenn die ABA vermittelte Signaltransduktion zu einem Anstieg der Kalziumkonzentration führt. Da somit die Kinasen OST1, CPK6 und CPK23 ohne dieses Kalziumsignal aktiv sind, benötigen diese einen übergeordneten Regulationsmechanismus. In den BIFC-Experimenten konnte eine deutliche Interaktion der Phosphatasen ABI1 und 2 zu den SLAC1 aktivierenden Kinasen beobachtet werden. Dass diese Interaktion zu einem Ausbleiben der Anionenkanalaktivierung führt, wurde in TEVC-Messungen gezeigt. Mit diesen Erkenntnissen um die ABA-Signaltransduktionskette in Schließzellen konnten in in vitro Kinase Experimenten ihre einzelnen Glieder zusammengesetzt und der ABA-vermittelte Stomaschluss nachvollzogen werden. In dieser Arbeit zeigte sich, dass, das unter Wasserstress-Bedingungen synthetisierte Phytohormon, ABA von Rezeptoren der RCAR/PYR/PYL-Familie percepiert wird. Anschließend bindet die Phosphatase ABI1 an den ABA-RCAR1 Komplex. In ihrer freien Form inhibiert die Phosphatase ABI1 die Kinasen OST1, CPK3, 6, 21 und CPK23 durch Dephosphorylierung. Nach Bindung von ABI1 an RCAR1 sind diese Kinasen von dem inhibierenden ABI1 entlassen. Die Kinasen OST1, CPK6 und CPK23 stellen ihre Aktivität durch Autophosphorylierung wieder her. Die stark Ca2+-abhängigen Kinasen CPK3 und 21 benötigt hierzu noch einen ABA induzierten Ca2+-Anstieg im Zytoplasma. Diese Kinasen phosphorylieren anschließend SLAC1 am N-Terminus. Diese Phosphorylierung bewirkt die Aktivierung von SLAC1 woraufhin Anionen aus der Schließzelle entlassen werden. Das Fehlen dieser negativen Ladungen führt zur Depolarisation der Membran woraufhin der auswärtsgleichrichtende Kaliumkanal GORK aktiviert und K+ aus der Schließzelle entlässt. Der Verlust an Osmolyten bewirkt einen osmotisch getriebenen Wasserausstrom und das Stoma schließt sich. / This work should clarify whether SLAC1 is the anion channel itself, or a regulatory component of S-type anion channels. To answer this question we searched for activating interaction partners of SLAC1. For this purpose the bimolecular fluorescence complementation (BiFC) technique was used following heterologous expression in Xenopus oocytes. Since anion currents of guard cells have been shown to be associated with phosphorylation events we focused on calcium dependent kinases (CPKs), ABA-activated SnRK kinases and PP2C phosphatases. Members of these families were already known to be involved in ABA-dependent stomatal closure. BIFC experiments revealed that SnRK2.6 (OST1) and several CPKs physically interact with SLAC1 in oocytes. Upon coexpression of SLAC1 with these interacting kinases in Xenopus oocytes, SLAC1-related anion currents appeared similar to those observed in guard cells. Strongest anion channel activation was detected by coexpression of SLAC1 and OST1 or CPK23. These findings are supported by BIFC experiments detecting OST1 and CPK23 also as strongest interaction partners of SLAC1. The electrophysiological characterization of SLAC1 currents in Xenopus oocytes, in combination with in vivo patch clamp studies demonstrated that SLAC1 is the major component of S-type anion currents in Arabidopsis guard cells. Furthermore we could show that OST1 mediates direct S-type anion channel activation in a calcium-independent manner whereas CPKs are positive regulators of SLAC1 in the calcium-dependent branch of the ABA signaling pathway. Moreover in vitro kinase assays and TEVC measurements in oocytes revealed that there are two groups of SLAC1 activating CPK kinases with distinct Ca2+ affinities: i) the weak calcium-dependent CPK6 and CPK23 mediate anion channel activation even at the low resting calcium concentrations while ii) the high affinity kinases CPK3 and CPK21 are only active in response to an increase in cytosolic calcium concentration. Since OST1, CPK6 and CPK23 are active even without a preceding calcium signal, a master regulator is necessary which keeps those kinases inactive in the absence of ABA. BIFC experiments revealed a strong interaction of phosphatases ABI1 and 2 towards the SLAC1 activating kinases. Interestingly the integration of ABI1 into the SLAC1/kinase complex prevented SLAC1 activation in oocytes. Taken together our findings allowed us to reconstitute the ABA signaling pathway from the perception of ABA to the activation of S-type anion channel SLAC1, in turn leading to stomatal closure. Under water stress conditions the phytohormone ABA is synthesized and sensed by its receptors (RCAR/PYR/PYL). This allows binding of ABI1 to the active ABA-RCAR1 complex. In its free form ABI1 by dephosphorylation inhibits the kinases OST1, CPK3, 6, 21 and CPK23. After binding of ABI1 to RCAR1, however, these kinases are released from the inhibitory effect of ABI1. The kinases OST1, CPK23 and CPK6 become active by autophosphorylation. The strong Ca2+-dependent kinases CPK3 and CPK21 in addition need an ABA-induced rise in cytosolic calcium concentration to restore their activity. These active kinases phosphorylate SLAC1 at its N-terminus leading to the activation of SLAC1. The release of anions from guard cells depolarizes the guard cell membrane potential whereupon the outward rectifying potassium channel GORK is gated open. Finally the loss of osmolytes causes an osmotic driven water loss, the guard cells shrink and thus the stoma closes.
|
6 |
Untersuchung zu den frühen ABA-induzierten elektrischen Reaktionen in Schließzellen von Vicia faba / Investigation of the early ABA-induced electric responses of Vicia faba guard cellsKonrad, Kai Robert January 2008 (has links) (PDF)
Im Rahmen der vorliegenden Arbeit wurde die Perzeption und frühe Signaltransduktion des Phytohormons ABA in Schließzellprotoplasten von Vicia faba mittels der Patch-Clamp-Technik untersucht. Es wurde entdeckt, dass der ABA-Signaltransduktionskette zur Aktivierung von Plasmamembran-ständigen Anionenkanälen voraussichtlich eine Proteinkinase beinhaltet und durch eine cytosolische ABA-Perzeption ausgelöst wird. Die durch ABA-bewirkte Anionenkanal-Aktivierung verursacht in Schließzellen eine Plasmamembran-Depolarisation. Basierend auf der ABA-induzierten Schließzellen-Depolarisation wurde zudem eine Methode etabliert, um mit dem Spannungs-sensitiven Farbstoff DiBAC4(3) in Populationen von intakten Vicia faba-Schließzellprotoplasten Membranpotential-Änderungen zu quantifizieren. / Within the framework of this dissertation the perception and early signal transduction chain of the phytohormon ABA was investigated with the Patch-Clamp-technique in Vicia faba guard cell protoplasts. It was discovered that the ABA-signalling chain to activate plasma-membrane anion channels likely implied a protein kinase and was triggered through a cytosolic ABA-perception. The ABA-induced anion channel activation leads to plasma membrane depolarization. Based on the ABA-evoked depolarization response a method was developed to monitor and quantify membrane potential changes in populations of Vicia faba guard cell protoplasts with the voltage-sensitive dye DiBAC4(3).
|
7 |
Untersuchungen und Simulationen zur Koordination der Ionenflüsse bei der Schließzellbewegung in Vicia faba und Arabidopsis thaliana / Studies and Simulations about the Coordination of Ion Fluxes during the Guard Cell Movement in Vicia faba and Arabidopsis thalianaSteinmeyer, Ralf January 2005 (has links) (PDF)
Trotz der bereits lange gut bekannten Funktion der Stomata und der einzelnen, an der Funktion beteiligten Transportproteine, fehlen Funktionsmodelle, die diese schließzellspezifsch in einen Zusammenhang bringen und ihre Koordination untersuchen. Ergebnisse - Der einwärts gleichrichtende Kaliumkanal aus Arabidopsis thaliana, KAT1 ist sowohl molekularbiologisch, als auch elektrophysiologisch gut charakterisiert. Ein „ausschalten“ dieses Kanals sollte die Stomaöffnung deutlich verlangsamen oder vermindern. Es wurde aber unter verschiedenen Bedingungen, weder mit Licht als Öffungsreiz, noch mit Fusicoccin, kein Unterschied zwischen Wildtyp und KAT1::En-1 Mutante gefunden. - Einige Publikationen schlagen Zucker, vornehmlich Glukose als osmotisch aktive Substanz zur Stomaöffnung vor, da im Tagesgang bei längerer Stomaöffnung auch die Zuckerkonzentration zunimmt. Die Zuckeraufnahme wurde mit einem fluoreszierenden Glukose-Derivat gemessen und als lichtabhängig gefunden. Weiterhin wurde die Aufnahme besonders durch CCCP gehemmt, was auf eine Abhängigkeit von einem Protonengradienten hindeutet. - Die Aufnahme von Glukose wurde weiterhin mit einer Knockout-Mutante des AtSTP1 Protonen/Zucker-Kotransporters getestet. Die deutliche Verminderung des Anteils der fluoreszierenden Zellen gegenüber dem Wildtyp unter den gleichen Bedingungen zeigt eine Beteiligung dieses Kotransporters an der Glukose-Aufnahme. - Schließzellen in der intakten Pflanze wurden auf den Verlauf ihres Membranpotentials in CO2-freier Luft bei Licht/Dunkel Wechseln untersucht. Ein großer Teil dieser Zellen zeigte eine wiederholbare Hyperpolarisation im Licht und Depolarisation im Dunklen. Als Auslöser dieser Änderung in der Membranspannung wurde hauptsächlich die (In-)Aktivierung eines instantanen positiven Stromes in der Größÿe von etwa 35 pA festgestellt, vermutlich die H+-ATPase. - Die Abhängigkeiten des Anionenkanals, der einwärts und auswärts gleichrichtenden Kaliumkanäle und der Protonenpumpe von internen und externen Ionenkonzentrationen, dem pH-Wert und der Membranspannung wurden in einer biophysikalischen Simulation vereint. Zusammen mit den jeweiligen Leitfähigkeiten und Literaturdaten der Konzentrationsverläufe ergibt sich ein realistisches Modell der Flüsse zur Stomabewegung. - Aus dem Modell ergeben sich zwei wesentliche Voraussagen für das Zusammenwirken der Transportproteine: 1. Bei der Stomaöffnung muss die H+-ATPase zur Beendigung der Öffnung wieder deaktiviert werden, anderenfalls steigt die interne Kaliumkonzentration und das Membranpotential fällt auf Werte, die in Messungen nie gefunden wurden. Eine Desensitisierung der H+-ATPase wurde zwar nach Blaulicht-Pulsen bereits gemessen, jedoch nicht bei andauernder Beleuchtung. 2. Der bisher in Schließzellen noch nicht elektrophysiologisch nachgewiesene Protonen/Chlorid Kotransporter zum Import von Chlorid muss nicht nur während der Stomaöffnung aktiv sein, sondern erhält auch eine Rolle beim Stomaschluss. Da die cytosolische Chloridkonzentration deutlich unter der von Kalium liegt, würde die für den Efflux der beiden Ionen nötige Depolarisation bereits enden, wenn die Chloridkonzentration deutlich sinkt, also bevor auch die Konzentration von Kalium soweit abgenommen hätte, dass die Spaltöffnung geschlossen wäre. - Zur Messung interner Ionenkonzentrationen in intakten Schlieÿzellen wurden verschiedene Methoden der Beladung mit fluoreszierenden Indikatorfarbsto#en getestet. Die Beladung durch niedrigen pH, niedrige Temperatur oder der Farbstoffe als Acetoxymethyl-Ester kann bei Schließzellen von Vicia faba als nicht praktikabel angesehen werden. Lediglich eine Detergenz unterstützte Farbstoffbeladung wurde in der Literatur gefunden. - Zur parallelen Anwendung elektrophysiologischer Messungen und fluoreszenzbasierter Bestimmung von Ionenkonzentrationen wurde eine Technik der Druckinjektion über einen Kanal einer Doppel-Elektrode getestet. Diese Methode erlaubt die Farbstoffinjektion, allerdings hat sich die Spannungs-Klemm-Technik mit der für einen einzelnen Kanal einer Einstichelektrode notwendigen gepulsten Technik als nicht praktikabel erwiesen, da die Membranspannung vermutlich aufgrund nicht kompensierbarer Kapazitäten nicht die vorgegebenen Werte erreichte. / While the function of stomata as well as of the different proteins involved in ion fluxes across the plasma membrane are well understood, a guard cell specific model for the concerted function and coordination is still missing. Results - KAT1, the inward rectifying potassium channel from Arabidopsis thaliana is well characterized in terms of structure and electrophysiological function. A knock-out mutant of this channel should be restrained in stomatal opening. Nevertheless under different conditions, with light or fusicoccin as opening stimulus, no difference could be found between wild type and KAT1::En-1 mutant plants. - Glucose is found to accumulate in guard cells during the day when stomata are opened and it is thus suggested to contribute to the osmotical pressure for opening. The uptake of a fluorescent glucose derivative was found to be light dependent and impaired by addition of CCCP which eliminates the proton gradient across the plasma membrane. - A knock-out mutant of the proton/sugar cotransporter protein AtSTP1 showed a significant reduction of cells showing 2-NBDG fluorescence as compared to the wild type. This shows a prominent contribution of this transporter to the uptake of glucose. - Changes of the free running membrane potential upon light/dark transitions were measured in guard cells of intact Vicia faba plants. A majority of these cells showed repeatable hyperpolarizations in light and depolarizations in darkness. These changes in potential were mainly driven by the (in-)activation of an instantaneous positive current of about 35 mA, most probably the H+-ATPase. - In a biophysical simulation, the dependence of anion channel, inward as well as outward rectifying potassium channels and proton pump on cytosolic and apoplastic ion concentrations, pH and membrane potential were included to build a model of ion fluxes for stomatal movements. Also included were literature values for channel conductance and the kinetics of concentrations during stomatal movements. - From this model, two main predictions were made for the cooperation of transport proteins in stomatal movements: 1. At the end of the opening phase of stomata, the H+-ATPase must be deactivated, since otherwise the cytosolic potassium concentration would rise and the membrane potential would decrease both to values that were never reproduced in measurements. A desensitization of the H+-ATPase was already found after pulses of blue light, but never upon permanent white light. 2. The proton/chloride cotransporter not only needs to be active during stomal opening for chloride uptake, but also during closure. Since in guard cells of open stomata, the concentration of potassium is higher than that of chloride, a 1:1 efflux of both ions would soon end the depolarization needed for further potassium efflux. To overcome this, a chloride cycle is suggested, where the cotransporter is active and keeps the net efflux of chloride small. - Different loading techniques were tested for fluorescent calcium indicator dyes. Incubation at low pH, for the free acid form as well as low temperature for the acetoxymethyl-ester forms of the dyes were shown to be impossible in Vicia faba guard cells. During the work on this thesis, one example for a detergent-aided loading of free acid dyes was published. - For parallel recording of electrophyiological parameters and cytosolic ion concentrations, an injection technique was tested that operates by regulated air pressure on one barrel of a double-barreled pipette. The other barrel was used for measurements of the membrane potential. Experiments with a discontinuous voltage clamp amplifier failed, since the target voltage was not reached probably due to non-compensable, variable pipette capacities.
|
8 |
Elektrophysiologische Untersuchungen der Ionenflüsse und ihrer Regulation in Stomakomplex-bildenden Zellen von Zea mays und Schließzellen von Arabidopsis thaliana / Electrophysiological analysis of ion fluxes and their regulation in stomatal cell of Zea mays and guard cells of Arabidopsis thalianaMumm, Patrick January 2010 (has links) (PDF)
1. Im Rahmen dieser Arbeit konnten neue Erkenntnisse hinsichtlich des angenomme-nen gerichteten Ionentransports zwischen Schließ- und Nebenzellen von Zea mays gewonnen werden: a. Mittels der Patch-Clamp-Technik wurden in beiden Zelltypen S-Typ-ähnliche Anionenkanäle identifiziert. In Nebenzellen konnten sie durch steigende zytosolische Ca2+-Konzentrationen gehemmt und durch ABA und zytosolische Alkalisierung stimuliert werden. Die S-Typ-Anionenkanäle der Schließzellen wurden hingegen durch eine Alkalisierung kaum beeinflusst und durch steigende zytosolische Ca2+-Konzentrationen stimuliert. b. Darüber hinaus konnte an intakten Mais-Pflanzen mit der Einstich-Elektroden-Technik gezeigt werden, dass Nebenzellen eine gegenläufige Polarisation des Membranpotentials während der Licht-/Dunkel-induzierten Stomabewegung aufweisen. Da das Membranpotential der Nebenzellen von Hordeum vulgare ein zu Mais ähnliches Verhalten während der Stomabewegung zeigte und gegenläu-fig zur Membranpolarisation der benachbarten Schließzellen war, ist ein ähnli-ches Verhalten bei Zea mays Schließzellen naheliegend. c. Zudem wurde in intakten Nebenzellen von Zea mays eine zytosolische Alkali-sierung während der Licht-induzierten Stomaöffnung beobachtet, die bei Stomaschluss wieder auf den Ursprungswert zurückkehrte. d. Mit Hilfe rekonstruktierter 3D-Modelle von intakten Mais-Stomakomplexen konnte ein Volumenverhältnis zwischen Schließ- und Nebenzellen von 1:6 bzw. 1:4 bei geöffneten und geschlossenen Stomata ermittelt werden. Unter Einbeziehung der Vorarbeiten unserer Arbeitsgruppe konnten die hier gewon-nenen Erkenntnisse schlüssig in ein Modell zur Beschreibung des Shuttle-Ionentransports zwischen Neben- und Schließzellen während der Licht-induzierten Stomabewegung eingebunden werden. 2. Des Weiteren wurden die S-Typ-Anionenstromantworten von A. thaliana Schließ-zellen in Patch-Clamp-Experimenten näher untersucht. Dabei waren die S-Typ-Anionenströme bei Ca2+- bzw. ABA-Stimulation in CPK23- und OST1-Verlustmutanten im Vergleich zum Wildtyp stark reduziert. Diese in vivo generierten Daten untermauern die in vitro Ergebnisse der Arbeitsgruppe von Prof. R. Hedrich (Universität Würzburg), dass OST1 und CPK23 Interaktionspartner des S-Typ-Anionenkanals SLAC1 in A. thaliana sind. Das SLAC1-homologe Gen SLAH3 ko-diert für einen Nitrat-permeablen S-Typ-Anionenkanal in Schließzellen, der zudem durch externes Nitrat aktiviert wird. Da in slac1-3 Verlustmutanten S-Typ-ähnliche Anionenströme generiert werden konnten, wenn Nitrat das dominierende Anion dar-stellte oder den Chlorid-basierten Lösungen externes Nitrat zugegeben wurde, scheint SLAH3 unter bestimmten Bedingungen einen alternativen Weg für die Ent-lassung von Anionen aus der Schließzelle darzustellen. 3. Die elektrophysiologische Charakterisierung der R-Typ-Anionenkanäle in A. thaliana Schließzellen belegt, dass dieser Kanal ähnliche Grundcharakteristika aufweist, die schon in Vicia faba beschrieben wurden: eine starke Spannungsab¬hängigkeit, sowie schnelle Aktivierungs- und Deaktivierungskinetiken. Im Gegensatz zu Vicia faba wurde die Spannungsabhängigkeit dieses Kanaltyps in A. thaliana nicht durch externes Malat beeinflusst. Jedoch war unter externen Malatbedingungen die Stromantwort einer almt12-Verlustmutante im Vergleich zu Wildtyp-Schließzellen erheblich reduziert, während unter externen Sulfatbe¬dingungen keine Unterschiede zwischen Wildtyp und almt12-Verlustmutante auszu¬machen waren. ALMT12 scheint demnach für den Malat-aktivierten Teil des R-Typ-Anionenkanals verantwortlich zu sein. / 1. Within this dissertation the following new insights into the coordinated ion transport between guard and subsidiary cells of Zea mays were gained: a. Using the patch clamp technique on subsidiary and guard cell protoplasts, S-type-like anion channels were identified in both cell types. In subsidiary cells they were inhibited by elevated cytosolic calcium con-centrations and stimulated by ABA and cytosolic alkalinization. In con-trast, the S-type-like guard cell anion channels were hardly influenced by alkalinization and stimulated upon a rise in the cytosolic free calcium level. b. Impaling of subsidiary cells in intact Zea mays plants with microeletrodes revealed a reversed membrane polarization during light-/darkness-induced stomatal movement. Since the membrane potential of Hordeum vulgare subsidiary cells showed a similar behavior that was, however, reversed in the surrounding guard cells during stomatal movement, a similar change in the membrane potential of Zea mays guard cells is most likely. c. Furthermore an alkalinization in Zea mays subsidiary cell could be moni-tored during light-induced stomatal opening, which returned to original values after stomatal closure. d. Based on reconstructed 3D-models of intact maize stomatal complexes, a volume ratio between guard cells and subsidiary cells of 1:6 and 1:4 of open and closed stomata, respectively, were estimated. The obtained results could be conclusively embedded in a model that decribes the shuttle transport of ions between guard and subsidiary cells during light-induced stomatal movement. 2. Patch clamp studies on guard cells of A. thaliana CPK23- and OST1-loss-of-function mutants showed strongly reduced S-type anion currents after stimula-tion through Ca2+ or ABA compared to wild type. These in vivo data support the results of the working group of Prof. R. Hedrich (University Würzburg), that OST1 and CPK23 are directly interacting with the S-type anion channel in A. thaliana. The SLAC1-homologue gene SLAH3 is encoding for a nitrate perme-able S-type anion channel in guard cells. Since SLAC1-loss-of-funtion mutants generate S type anion currents when nitrate is the dominating anion or nitrate is present in chloride-based solutions, SLAH3 seems to represent an alternative pathway for anion efflux in guard cells. 3. The R-type anion channels from Arabidopsis thaliana guard cells were electro-physiologically characterized and revealed similar electrical characteristics as those known from Vicia faba guard cells: strong voltage dependence, fast activa-tion- and deactivation kinetics. In contrast to Vicia faba, however, the voltage dependence was not modulated by external malate. But in the presence of exter-nal malate the current response in ALMT12-loss-of-function mutants was strongly reduced, while similar anion currents were monitored in wild type and almt12 mutant plants in the absence of external malate. These results indicate that ALMT12 is likely responsible for the malate-activating component of the R-type anion channel.
|
9 |
Funktionelle Charakterisierung von SLAC1-homologen Anionenkanälen aus Arabidopsis thaliana / Functional characterization of SLAC1-homologous anion channels from Arabidopsis thalianaMaierhofer, Tobias January 2012 (has links) (PDF)
S-Typ (slow)-Anionenkanäle vermitteln in Schließzellen den Efflux von Chlorid und Nitrat, welcher letztendlich zum Schließen der Stomata, z.B. als Antwort auf Trockenstress, führt. Dabei kommt dem Phytohormon Abscisinsäure (ABA) eine zentrale Rolle zu. Es wird als Antwort auf Trockenheit synthetisiert und vermittelt über eine schnelle ABA-Signaltransduktionskette die Aktivierung von S-typ Anionenkanälen. SLAC1 war die erste Komponente eines S-Typ-Anionenkanals, die in Schließzellen identifiziert wurde. Durch die Expression in Xenopus Oozyten, konnte SLAC1 als S-Typ-Anionenkanal funktionell charakterisiert werden und seine Regulation über Kinasen (OST1, CPK21/23) und Phosphatasen (ABI1, ABI2) beschrieben werden. Mit diesen Untersuchungen gelang ein entscheidender Durchbruch bei der Entschlüsselung von Netzwerken, welche den Anionentransport in Schließzellen als Antwort auf Trockenstress regulieren. Im Laufe dieser Arbeit konnte in Schließzellen von Arabidopsis auch die Expression des SLAC1 Homolog 3 (SLAH3) nachgewiesen werden. Die Koexpression von SLAH3 mit der Ca2+-abhängigen Proteinkinase CPK21 in Xenopus Oozyten führte zu Nitrat-induzierten Anionenströmen. Dabei wurde die Aktivität dieses S-Typ-Anionenkanals, sowohl durch Phosphorylierung, als auch durch Kalzium und Nitrat gesteuert. Ähnlich wie bei der Regulation von SLAC1 konnte die Aktivität von SLAH3 durch die Proteinphosphatase ABI1, aus der Familie der PP2Cs, blockiert werden. Diese Eigenschaft von ABI1 passt sehr gut zur bekannten Rolle dieser Phosphatase in Schließzellen: ABI1 ist ein negativer Regulator der ABA-Signalkaskade und wird durch ABA inhibiert. Unsere biophysikalischen Analysen führten schließlich zur Rekonstitution des schnellen ABA-Signaltransduktionsweges. Die Bindung von ABA an den Komplex aus ABA-Rezeptor (RCAR/PYL/PYR) und ABI1 bewirkt die Inaktivierung von ABI1 und somit die Aktivierung von CPK21. Für deren volle Aktivität ist eine ABA-abhängige Erhöhung der zytosolischen Ca2+-Konzentration notwendig. Die aktivierte Kinase CPK21 ist schließlich in der Lage, den Anionenkanal SLAH3 zu phosphorylieren und in der Anwesenheit von Nitrat zu aktivieren. Somit liefert die Identifizierung und Charakterisierung von SLAH3, als den Nitrat-, Kalzium- und ABA-sensitiven Anionenkanal in Schließzellen, Einblicke in die Beziehung zwischen der Reaktion dieses Zelltyps auf Trockenstress, der Funktion von Nitrat als Signalmolekül und dem Nitratmetabolismus. Für die meisten höheren Pflanzen stellt Nitrat die wichtigste Stickstoffquelle dar. Die Nitrataufnahme über die Wurzel repräsentiert daher den entscheidenden Schritt für den Stickstoff-Metabolismus. Ausgehend von den Zellen des Wurzelkortex muss das Nitrat für den Langstreckentransport in die oberen Pflanzenorgane, in die Xylemgefäße der Stele eingebracht werden. Die Identifikation von Proteinen und Genen, die für den Nitrattransport verantwortlich sind, ist für das Verständnis der Nitrataufnahme und -verteilung in der Pflanze eine Grundvoraussetzung. Dabei scheinen Protonen-gekoppelte Transporter der NRT1-, bzw. NRT2-Klasse, die Verschiebung von Nitrat aus dem Boden in die Wurzeln zu bewerkstelligen. Aus der Endodermis, bzw. den Xylem-Parenchymzellen muss Nitrat anschließend in das extrazelluläre Medium der Xylemgefäße freigegeben werden, um über den Transpirationssog in den Spross zu gelangen. Auch am Transport dieses Anions in das Xylem ist mit NRT1.5 ein Nitrattransporter der NRT1-Klasse beteiligt, jedoch ergaben Experimente an NRT1.5-Verlustmutanten, dass weitere Transportmechanismen für den Efflux von Nitrat in das Xylem existieren müssen. Im Rahmen dieser Doktorarbeit konnte das SLAC1-Homolog 2 (SLAH2) funktionell in Xenopus Oozyten exprimiert werden. Mit Hilfe der BIFC-Methode wurde gezeigt, dass dabei die Interaktion mit der Ca2+-abhängigen Proteinkinase CPK21 essentiell ist. Elektrophysiologische Experimente verdeutlichten, dass SLAH2 einen Nitrat-selektiven S-Typ-Anionenkanal repräsentiert, dessen Aktivität gleichzeitig durch die Anwesenheit eben dieses Anions im externen Medium reguliert wird. Durch die Promoter:GUS-Technik gelang es, die Lokalisation von SLAH2 exklusiv in den Zellen der Wurzelstele von Arabidopsis nachzuweisen. Aufgrund des stark negativen Membranpotentials pflanzlicher Zellen und der vorliegenden Anionengradienten, dürften Anionenkanäle in erster Linie den Ausstrom von Anionen vermitteln. Da in Nitrat-Aufnahme-Experimenten an SLAH2-Verlustmutanten, im Vergleich zu Wildtyp-Pflanzen, ein geringerer Nitratgehalt im Spross, dagegen eine höhere Konzentration dieses Anions in den Wurzeln zu detektieren war, scheint der S-Typ-Anionenkanal SLAH2 am Transport von Nitrat aus den Wurzeln in die Blätter beteiligt zu sein. Dabei könnte er entweder direkt an der Beladung des Xylems mit Nitrat mitwirken, oder diese durch seine potentielle Funktion als Nitratsensor regulieren. / S-type (slow)-anion channels in guard cells mediate the efflux of chloride and nitrate which finally leads to the closing of stomata, e.g. in response to drought stress. Hereby the phytohormone abscisic acid (ABA) plays a central role. It is synthesized in response to drought and mediates the activation of S-type anion channels via a fast ABA signal transduction pathway. SLAC1 was the first component of S-type anion channels that was identified in guard cells. Following expression in Xenopus oocytes, SLAC1 could be functionally characterized as a S-type anion channel and its regulation via kinases (OST1, CPK21/23) and phosphatases (ABI1, ABI2) could be demonstrated. These studies represented a crucial breakthrough in decoding networks that regulate the anion transport in guard cells in response to drought stress. In the course of this work the expression of the SLAC1 homolog 3 (SLAH3) was detected in guard cells of Arabidopsis, too. In line with the phosphorylation-dependent activation of SLAC1, coexpression of SLAH3 with the Ca2+-dependent protein kinase CPK21 in Xenopus oocytes resulted in nitrate-induced anion currents. Thus the activity of this S-type anion channel was controlled by phosphorylation as well as via calcium and nitrate. Similar to the regulation of the activity of SLAC1, SLAH3 could be blocked by the protein phosphatase ABI1, a member of the PP2C family. This property of ABI1 is well in line with its known physiological role in guard cells: ABI1 represents a negative regulator of ABA signaling and is inhibited by ABA. Our biophysical and biochemical analyses resulted in the reconstitution of the fast ABA signal transduction pathway: Binding of ABA to the complex of the ABA receptor (RCAR/PYL/PYR) and ABI1 leads to the inactivation of ABI1 and thus to the activation of CPK21. For its full activity an ABA-dependent increase in the cytosolic Ca2+ concentration is necessary. The activated kinase CPK21 is finally able to phosphorylate and activate the anion channel SLAH3 in the presence of nitrate. Thus, the identification and characterization of SLAH3 as the nitrate, calcium and ABA sensitive anion channel in guard cells, provides insights into the relationship between the reaction of this cell type to drought stress, the function of nitrate as a signaling molecule and the nitrate metabolism. Nitrate represents the most important nitrogen source for the majority of higher plants. Nitrate uptake by roots is therefore a decisive step in the nitrogen metabolism of plants. Starting from the cells of the root cortex nitrate is loaded into the xylem vessels of the stele for long-distance transport into the aerial plant organs. The identification of proteins and genes that are responsible for the transport of nitrate is a basic requirement for the understanding of nitrate uptake and distribution in the plant. Thereby proton coupled transporters of the NRT1 and NRT2 class seem to be responsible for the translocation of nitrate from the soil to the root. From the endoderm and the xylem parenchyma cells nitrate is then released into the extracellular medium of the xylem vessels to enter the transpiration stream to the shoot. NRT1.5, a transporter of the NRT1 family, was shown to be involved in this process. However, experiments on NRT1.5-deficient mutants showed that additional transport mechanisms for the efflux of nitrate into the xylem must exist. In the course of this dissertation the SLAC1 homolog 2 (SLAH2) was functionally expressed in Xenopus oocytes. With the help of the BIFC method it could be shown that hereby the interaction with the Ca2+-dependent protein kinase CPK21 is essential. Electrophysiological experiments demonstrated that SLAH2 represents a nitrate-selective S-type anion channel whose activity is regulated by the presence of this anion in the external medium. The localization of SLAH2 exclusively in the cells of the Arabidopsis root stele was detected via the promoter:GUS technique. Due to the hyperpolarized membrane potential of plant cells and the outward-directed anion gradients, it is likely that anion channels primarily mediate the efflux of anions. Nitrate uptake experiments on SLAH2 loss of function mutants revealed a lower nitrate content in the shoot compared to wild-type plants, whereas a higher concentration of this anion was detected in the roots. This indicates that the S-type anion channel SLAH2 is involved in the transport of nitrate from the roots into the leaves. Thereby SLAH2 could either be directly responsible for the xylem loading with nitrate or it could regulate this process by its potential function as a nitrate sensor.
|
10 |
Aufklärung der molekularen Struktur und Funktion des R-Typ Anionenkanals QUAC1 in Schließzellen / Molecular structure and function analyses of the R-type anion channel QUAC1 in guard cellsImes, Dennis January 2016 (has links) (PDF)
Zum Gasaustausch mit Ihrer Umgebung besitzen höhere Pflanzen stomatäre Komplexe. Die Turgor-getrieben Atmungsöffnungen in der Epidermis der Blätter werden von zwei Schließzellen umsäumt. Um bei Trockenheit einen exzessiven Verlust von Wasser zu verhindern, synthetisieren/importieren Schließzellen das Stresshormon ABA (Abszisinsäure), das über eine schnelle ABA-Signalkaskade plasmamembrangebundene Ionenkanäle steuert. Dabei wird der Stomaschluss durch die Aktivität von R-(rapid) und S-(slow)Typ Anionenkanälen initiiert. Obwohl die R- und S-Typ Anionenströme in Schließzellen seit Jahrzehnten bekannt waren, konnte erst kürzlich das Gen identifiziert werden, das für den S-Typ Anionenkanal (SLAC1, Slow activating Anion Channel 1) kodiert. Daraufhin wurde schnell der Zusammenhang zwischen dem Stresshormon ABA, der ABA-Signalkette und der Aktivität des SLAC1 Anionenkanals im heterologen Expressionssystem der X. laevis Oozyten als auch in Schließzellprotoplasten aufgeklärt. Es konnte gezeigt werden, dass ABA durch einen zytosolischen Rezeptor/Phosphatasekomplex (RCAR1/ABI1) erkannt wird und die Aktivität von kalziumabhängigen Kinasen (CPK-Familie) sowie kalziumunabhängigen Kinasen der SnRK2-Familie (OST1) steuert. In Anwesenheit von ABA phosphorylieren diese Kinasen SLAC1 und sorgen so für die Aktivierung von Anionenströmen und damit für die Initiierung des Stomaschlusses.
Die genetische Herkunft der ABA-induzierten R-Typ Ströme in Schließzellen war zu Beginn der vorliegenden Arbeit noch nicht bekannt. R-Typ Ströme zeichnen sich durch eine strikte Spannungsabhängigkeit und sehr schnellen Aktivierungs- sowie Deaktivierungskinetiken aus. Die Charakterisierung von Verlustmutanten des Schließzell-exprimierten Gens ALMT12 (Aluminium-aktivierter Malattransporter 12) konnte in Zusammenarbeit mit der Arbeitsgruppe Martinoia (Zürich) erste Hinweise auf die Beteiligung dieses Gens an der Stomabewegung demonstrieren. Anschließende Patch-Clamp Untersuchungen an Schließzellprotoplasten aus Wildtyppflanzen und ALMT12-Verlustmutanten zeigten, dass ALMT12 für die Malat-aktivierte R-Typ Anionenstromkomponente verantwortlich ist. Deshalb wurde der Anionenkanal QUAC1 (Quickly activating Anion Channel 1) benannt - in Anlehnung an die Benennung des Anionenkanals SLAC1. Mit der Identifizierung von QUAC1 in planta war es nun meine Aufgabe, die elektrischen Eigenschaften von ALMT12/QUAC1 und dessen Aktivitätskontrolle durch die ABA-Signalkaskade im heterologen Expressionssystem der Xenopus Oozyten zu untersuchen.
Protein-Protein Interaktionsstudien mit der Hilfe der Bimolekularen Fluoreszenz-Technik, sowie die Beobachtung von markant erhöhten QUAC1 Anionenströmen in Anwesenheit der SnRK2 Kinase OST1 und den Calcium-abhängigen Kinasen CPK2 und CPK20, ließen den Schluss zu, dass QUAC1, ebenso wie SLAC1, unter der Kontrolle des schnellen ABA-Signalwegs steht. Eine zusätzliche Expression des negativen Regulators ABI1 unterdrückte die aktivierenden Eigenschaften der QUAC1-aktivierenden Kinasen, was die Hypothese der Koregulation von S- und R-Typ Anionenkanälen durch die gleiche ABA-Signalkaskade weiter unterstützt.
Zur weiteren Aufklärung der elektrischen Eigenschaften von QUAC1 wurden tiefgreifende elektrophysiologische Untersuchungen mit der Zwei-Elektroden-Spannungsklemmen Technik durchgeführt. Durch die Wahl von geschickten Spannungsprotokollen konnte sowohl die schnelle Aktivierungskinetik als auch die schnelle Deaktivierungskinetik von QUAC1 bestimmt und quantifiziert werden. Diese Stromantworten waren sehr ähnlich zu den R-Typ Strömen, die man von Patch-Clamp Untersuchungen an Schließzellprotoplasten kannte, was ein weiteres Indiz dafür war, dass es sich bei QUAC1 tatsächlich um eine Komponente des R-Typ Kanals aus Schließzellen handelt. Weiterführende Untersuchungen bezüglich der Spannungsabhängigkeit und der Selektivität von QUAC1 charakterisierten das Protein als einen Depolarisations-aktivierten Anionenkanal mit einer starken Präferenz für Dicarbonsäuren wie Malat und Fumarat. Zudem konnte auch eine Leitfähigkeit für Sulfat und Chlorid nachgewiesen werden. Interessanterweise erwies sich Malat nicht nur als ein permeierendes Ion, sondern auch als ein regulierendes Ion, welches das spannungsabhängige Schalten von QUAC1 maßgeblich beeinflusst. Extrazelluläres Malat verschob die Offenwahrscheinlichkeit von QUAC1 sehr stark zu negativeren Membranspannungen, so dass der Anionenkanal bereits bei typischen Ruhespannungen von Schließzellen (ca. -150 mV) aktiviert werden konnte. Eine Beladung von QUAC1-exprimierender Oozyten mit Malat bewirkte zum einen höhere Anioneneffluxströme, aber auch eine Verschiebung der spannungsabhängigen Offenwahrscheinlichkeit zu negativeren Membranpotentialen.
Struktur-Funktionsanalysen sollten die umstrittene Topologie von ALMT-ähnlichen Proteinen beleuchten und die molekulare Herkunft der Phosphorylierungsaktivierung aufzeigen, sowie die Malatabhängigkeit und die starke Spannungsabhängigkeit von QUAC1 aufklären. Es zeigte sich jedoch schnell, dass Punktmutationen und Deletionen im C-Terminus von QUAC1 sehr häufig zu nicht-funktionellen Mutanten führten. Diese Tatsache weist darauf hin, dass es sich um einen hoch-strukturierten und funktionell sehr wichtigen Bereich des Anionenkanals handelt. Auch die Topologie des Anionenkanalproteins wird in der Literatur kontrovers diskutiert. Sowohl die Lage des N- und C-Terminus (extrazellulär oder intrazellulär), als auch die Anzahl der membrandurchspannenden Domänen war nicht abschließend geklärt. Deshalb wurde in einem Fluoreszenz-basiertem Ansatz die Lage der Termini bestimmt. Im Rahmen meiner Arbeit konnte somit eindeutig gezeigt werden, dass sich beide Termini im Zytosol der Zelle befinden. Auf Grundlage von Modellen aus der Literatur und meiner Topologiebestimmungen konnte schließlich ein erweitertes Modell zur Struktur von QUAC1 entwickelt werden. Dieses Modell kann in Zukunft als Ausgangspunkt für weiterführende Struktur-Funktionsanalysen dienen.
Diese Arbeit hat somit gezeigt, dass das Gen QUAC1 tatsächlich eine Komponente der R-Typ Ströme in Schließzellen kodiert. Ebenso wie SLAC1 steht der Malat-induzierte Anionenkanal QUAC1 unter der Kontrolle der schnellen ABA-Signalkaskade. In Zukunft bleibt zu klären, welche weiteren Gene für die R-Typ Kanalproteine in Schließzellen kodieren und welche strukturelle Grundlage für die besonderen Eigenschaften von QUAC1 hinsichtlich seiner schnellen Kinetiken, seiner Selektivität und Aktivierbarkeit durch Malat. / Higher plants are able to exchange gases with their environment. This gas exchange is accomplished by the stomatal complex, which consist of two tugor-driven guard cells (GC) that surround a pore in the epidermis. Under drought conditions, guard cells produce and import the plant stress hormone abscisic acid (ABA). ABA is able to activate plasma membrane localized ion channels via the fast ABA-signal cascade, which leads to a closure of the stoma and thus minimizes the loss of water. The stomatal closure is initialized by the R-(rapid) and S-(slow) type anion channels. Although R- and S-type anion channels in guard cells have been known for over a decade, the gene which decodes the S-type anion channel SLAC1 (Slow activating Anion Channel 1) has only recently been identified. Consequently, the relationship between the plant hormone ABA, the ABA-signal-transduction-chain, and the activity of SLAC1 could be clarified in rapid succession in the heterologous expression system of X. laevis oocytes as well as in GC-protoplasts. It could be shown that ABA is recognized by a cytosolic receptor/phosphatase complex (RCAR/ABI1). This complex in turn regulates the activity of calcium dependent kinases of the CPK-family as well as the calcium independent kinases of the SnRK2-family (OST1). In the presence of ABA, these kinases activate SLAC1 by phosphorylation, and by this activate anion currents across the plasma membrane, ultimately leading to closure of the stomates.
The genetic origin of the ABA induced R-type currents in guard cells was unknown at the beginning of this thesis. R-type currents are characterized by strong voltage-dependent behavior and fast activation- and deactivation-kinetics. In cooperation with the workgroup of Martinoia (Zürich), knock-out plants missing the guard cell gen ALMT12 (Aluminum activated Malate Transporter 12) were characterized. This work delivered the first hints that ALMT12 is involved in the stomatal movement. Subsequent patch-clamp studies on GC-protoplasts from WT and ALMT12 knock-out mutants revealed that ALMT12 is responsible for the malate-activated component of the R-type anion currents. Therefore, the anion-channel was named QUAC1 (Quick activating Anion Channel) in dependence on the naming of SLAC1. With the identification of QUAC1 in planta it was my duty to research the electrical properties of ALMT12/QUAC1 as well as the activation by the ABA-signal-transduction-chain in the heterologous expression system of X. laevis oocytes.
Protein-protein interaction studies via bimolecular fluorescence complementation (BIFC) as well as significantly higher QUAC1 anion currents in the presence of the SnRK2 kinase OST1 and the calcium-dependent-kinases CPK2 and CPK20 led to the conclusion that QUAC1 is under the control of the fast ABA signaling pathway, as it was shown before for SLAC1. Furthermore expression of the negative regulator ABI1 inhibited the activating properties of the QUAC1-activating kinases. These findings support further the hypotheses of the simultaneous regulation of S- and R-type anion channels by the ABA-signaling pathway.
To further elucidate the electrical properties of QUAC1, electrophysiological investigations were performed with the two-electrode-voltage-clamp technique (TEVC). In this way, the fast activation and deactivation of QUAC1 could be identified and quantified by carefully chosen voltage-clamp protocols. These current responses of QUAC1 closely resembled the R-type currents known from former patch-clamp studies from GC-protoplasts. This further supported the conclusion that QUAC1 is indeed a component of the R-type channels of guard cells. Additional investigations of the voltage-dependence and selectivity of QUAC1 characterized the protein as a depolarization-activated anion channel with strong preference for bicarbonate acids like malate and fumarate. Furthermore, a conductance for sulfate and chloride could also be shown. Interestingly, malate was not only able to permeate the channel, it was also able to alter the voltage-dependence of QUAC1. External malate strongly shifted the open probability of QUAC1 to negative membrane voltages. By this shift the anion channel could be activated at typical guard cell membrane potentials (approx. 150 mV). Loading of QUAC1 expressing oocytes with malate produced enhanced anion efflux currents and shift the voltage-dependent open probability to negative membrane potentials.
Structure function analysis were performed to clarify the controversial topology of ALMT like proteins and the molecular origin of the phosphorylation activation. Furthermore, this should elucidate the origin of the malate dependence and the strong voltage dependence of QUAC1. It soon became evident that point mutations and deletions in the C-terminus of QUAC1 very often lead to nonfunctional mutants. This points toward a highly structured and functionally important region of the anion channel. In addition, the topology of the anion-channel-protein is controversially debated in literature. Neither the position of the C- and N-terminus (intra- or extracellular) nor the number of transmembrane domains has been conclusively established. Due to this, the position of the C- and N-termini were localized by a fluorescence based experiment. As part of this work, it could be shown explicitly that both termini reside in the cytosol of the cell. Based on models from the literature and my own topology studies, an enhanced structure model for QUAC1 could be generated. This model will serve as a starting point for future structure function analysis.
This work has thus shown that the gene QUAC1 indeed encodes a component of the R-type currents in guard cells. Like SLAC1, the malate-induced anion channel QUAC1 is under the control of the fast ABA-signal-cascade. Future works must establish which further genes encode R-type channel proteins and which structural attributes are responsible for the special traits of QUAC1: its fast kinetics, its selectivity and its activation by malate.
|
Page generated in 0.0797 seconds