Spelling suggestions: "subject:"schroedinger equation. eng"" "subject:"schroedinger equation. eng""
1 |
Estudo de sistemas quânticos não-hermitianos com espectro real /Santos, Vanessa Gayean de Castro Salvador. January 2009 (has links)
Orientador: Alvaro de Souza Dutra / Banca: Denis Dalmazi / Banca: Marcelo Batista Hotti / Banca: Alexandre Grezzi de Miranda Schmidt / Banca: Elso Drigo Filho / Resumo: Nesta tese procuramos veri car e aprofundar os limites de validade dos chamados sistemas quânticos com simetria PT. Nestes tem-se, por exemplo, sistemas cuja hamiltoniana é não-hermitiana mas apresenta um espectro de energia real. Tal característica é usualmente justi cada pela presença da simetria PT (paridade e inversão temporal), muito embora não haja ainda uma demonstração bem aceita na literatutra desta propriedade de tais sistemas. Inicialmente estudamos sistemas quânticos não-relativísticos dependentes do tempo, sistemas em mais dimensões espaciais, a m de veri car possíveis limites da simetria PT na garantia da realidade do espectro. Logo depois estudamos sistemas quânticos relativísticos em 1+1D que possuem simetria PT com uma mistura adequada de potenciais: vetor, escalar e pseudo-escalar, sendo o potencial vetor complexo. Em seguida trabalhamos com densidades de lagrangiana com potenciais não-hermitianos em 1+1 dimensões espaço-temporais e em dimensões mais altas. A vantagem das baixas dimensões é que alguns sistemas possuem soluções não-perturbativas exatas. Finalmente, mostramos que não somente é possível ter um modelo consistente com dois campos escalares, mas também que a introdução de um número maior de campos permite que a densidade de energia também permaneça real. / Abstract: In this thesis we verify and try to deepen the limits of validity of the so called quantum systems with PT-symmetry. These are systems whose Hamiltonians are non-Hermitian but present real energy spectra. Such characteristic usually is justi ed by the presence of PT symmetry (parity and time inversion), despite of the fact that there is no well accepted demonstration in literature of this property of such systems yet. Initially we study timedependent non-relativistic quantum systems in one spatial dimension in order to verify possible limits for which the PT symmetry grants the reality of the spectra. Soon later we study relativistic quantum systems in 1+1D that they possess symmetry PT with an convenient mixing of complex vector plus scalar plus pseudoscalar potentials is considered. After that, we work with a Lagrangian density with such features in 1+1 space-time dimensions and higher dimensions, in the context of eld theory. The advantage of working in low dimensions is that, in such dimensions, some systems possess exact nonperturbative solutions. Finally, we show that not only it is possible to have a consistent model with two scalar elds, but also that the introduction of a bigger number of elds allows that the energy density also remains real. / Doutor
|
Page generated in 0.1353 seconds