Spelling suggestions: "subject:"fahrtautorisierung"" "subject:"refaktorisierung""
1 |
Block SOR for Kronecker structured representationsBuchholz, Peter, Dayar, Tuğrul 15 January 2013 (has links) (PDF)
Hierarchical Markovian Models (HMMs) are composed of multiple low level models (LLMs) and high level model (HLM) that defines the interaction among LLMs. The essence of the HMM approach is to model the system at hand in the form of interacting components so that its (larger) underlying continous-time Markov chain (CTMC) is not generated but implicitly represented as a sum of Kronecker products of (smaller) component matrices. The Kronecker structure of an HMM induces nested block partitionings in its underlying CTMC. These partitionings may be used in block versions of classical iterative methods based on splittings, such as block SOR (BSOR), to solve the underlying CTMC for its stationary vector. Therein the problem becomes that of solving multiple nonsingular linear systems whose coefficient matrices are the diagonal blocks of a particular partitioning. This paper shows that in each HLM state there may be diagonal blocks with identical off-diagonal parts and diagonals differing from each other by a multiple of the identity matrix. Such diagonal blocks are named candidate blocks. The paper explains how candidate blocks can be detected and how the can mutually benefit from a single real Schur factorization. It gives sufficient conditions for the existence of diagonal blocks with real eigenvalues and shows how these conditions can be checked using component matrices. It describes how the sparse real Schur factors of candidate blocks satisfying these conditions can be constructed from component matrices and their real Schur factors. It also demonstrates how fill in- of LU factorized (non-candidate) diagonal blocks can be reduced by using the column approximate minimum degree algorithm (COLAMD). Then it presents a three-level BSOR solver in which the diagonal blocks at the first level are solved using block Gauss-Seidel (BGS) at the second and the methods of real Schur and LU factorizations at the third level. Finally, on a set of numerical experiments it shows how these ideas can be used to reduce the storage required by the factors of the diagonal blocks at the third level and to improve the solution time compared to an all LU factorization implementation of the three-level BSOR solver.
|
2 |
Block SOR Preconditional Projection Methods for Kronecker Structured Markovian RepresentationsBuchholz, Peter, Dayar, Tuğrul 15 January 2013 (has links) (PDF)
Kronecker structured representations are used to cope with the state space explosion problem in Markovian modeling and analysis. Currently an open research problem is that of devising strong preconditioners to be used with projection methods for the computation of the stationary vector of Markov chains (MCs) underlying such representations. This paper proposes a block SOR (BSOR) preconditioner for hierarchical Markovian Models (HMMs) that are composed of multiple low level models and a high level model that defines the interaction among low level models. The Kronecker structure of an HMM yields nested block partitionings in its underlying continuous-time MC which may be used in the BSOR preconditioner. The computation of the BSOR preconditioned residual in each iteration of a preconditioned projection method becoms the problem of solving multiple nonsingular linear systems whose coefficient matrices are the diagonal blocks of the chosen partitioning. The proposed BSOR preconditioner solvers these systems using sparse LU or real Schur factors of diagonal blocks. The fill-in of sparse LU factorized diagonal blocks is reduced using the column approximate minimum degree algorithm (COLAMD). A set of numerical experiments are presented to show the merits of the proposed BSOR preconditioner.
|
3 |
Block SOR Preconditional Projection Methods for Kronecker Structured Markovian RepresentationsBuchholz, Peter, Dayar, Tuğrul 15 January 2013 (has links)
Kronecker structured representations are used to cope with the state space explosion problem in Markovian modeling and analysis. Currently an open research problem is that of devising strong preconditioners to be used with projection methods for the computation of the stationary vector of Markov chains (MCs) underlying such representations. This paper proposes a block SOR (BSOR) preconditioner for hierarchical Markovian Models (HMMs) that are composed of multiple low level models and a high level model that defines the interaction among low level models. The Kronecker structure of an HMM yields nested block partitionings in its underlying continuous-time MC which may be used in the BSOR preconditioner. The computation of the BSOR preconditioned residual in each iteration of a preconditioned projection method becoms the problem of solving multiple nonsingular linear systems whose coefficient matrices are the diagonal blocks of the chosen partitioning. The proposed BSOR preconditioner solvers these systems using sparse LU or real Schur factors of diagonal blocks. The fill-in of sparse LU factorized diagonal blocks is reduced using the column approximate minimum degree algorithm (COLAMD). A set of numerical experiments are presented to show the merits of the proposed BSOR preconditioner.
|
4 |
Block SOR for Kronecker structured representationsBuchholz, Peter, Dayar, Tuğrul 15 January 2013 (has links)
Hierarchical Markovian Models (HMMs) are composed of multiple low level models (LLMs) and high level model (HLM) that defines the interaction among LLMs. The essence of the HMM approach is to model the system at hand in the form of interacting components so that its (larger) underlying continous-time Markov chain (CTMC) is not generated but implicitly represented as a sum of Kronecker products of (smaller) component matrices. The Kronecker structure of an HMM induces nested block partitionings in its underlying CTMC. These partitionings may be used in block versions of classical iterative methods based on splittings, such as block SOR (BSOR), to solve the underlying CTMC for its stationary vector. Therein the problem becomes that of solving multiple nonsingular linear systems whose coefficient matrices are the diagonal blocks of a particular partitioning. This paper shows that in each HLM state there may be diagonal blocks with identical off-diagonal parts and diagonals differing from each other by a multiple of the identity matrix. Such diagonal blocks are named candidate blocks. The paper explains how candidate blocks can be detected and how the can mutually benefit from a single real Schur factorization. It gives sufficient conditions for the existence of diagonal blocks with real eigenvalues and shows how these conditions can be checked using component matrices. It describes how the sparse real Schur factors of candidate blocks satisfying these conditions can be constructed from component matrices and their real Schur factors. It also demonstrates how fill in- of LU factorized (non-candidate) diagonal blocks can be reduced by using the column approximate minimum degree algorithm (COLAMD). Then it presents a three-level BSOR solver in which the diagonal blocks at the first level are solved using block Gauss-Seidel (BGS) at the second and the methods of real Schur and LU factorizations at the third level. Finally, on a set of numerical experiments it shows how these ideas can be used to reduce the storage required by the factors of the diagonal blocks at the third level and to improve the solution time compared to an all LU factorization implementation of the three-level BSOR solver.
|
Page generated in 0.0852 seconds