• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 642
  • 175
  • 45
  • 22
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 13
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 1090
  • 1090
  • 1090
  • 567
  • 296
  • 192
  • 192
  • 191
  • 186
  • 185
  • 183
  • 182
  • 176
  • 176
  • 160
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study to determine early influences on scientific knowledge.

Plant, Helen Beard Unknown Date (has links)
No description available.
2

A study of the relationship between student attitude toward science and use of the chemistry help room and the physics activities center

Pettus, Roxanne January 2010 (has links)
Digitized by Kansas Correctional Industries
3

Learning the Rules of the Game: The Nature of Game and Classroom Supports When Using a Concept-Integrated Digital Physics Game in the Middle School Science Classroom

Stewart Jr., Phillip January 2013 (has links)
Games in science education is emerging as a popular topic of scholarly inquiry. The National Research Council recently published a report detailing a research agenda for games and science education entitled Learning Science Through Computer Games and Simulations (2011). The report recommends moving beyond typical proof-of-concept studies into more exploratory and theoretically-based work to determine how best to integrate games into K-12 classrooms for learning , as well as how scaffolds from within the game and from outside the game (from peers and teachers) support the learning of applicable science. This study uses a mixed-methods, quasi-experimental design with an 8th grade class at an independent school in southern Connecticut to answer the following questions: 1. What is the nature of the supports for science content learning provided by the game, the peer, and the teacher, when the game is used in a classroom setting? 2. How do the learning gains in the peer support condition compare to the solo play condition, both qualitatively and quantitatively? The concept-integrated physics game SURGE (Scaffolding Understanding through Redesigning Games for Education) was selected for this study, as it was developed with an ear towards specific learning theories and prior work on student understandings of impulse, force, and vectors. Stimulated recall interviews and video observations served as the primary sources and major patterns emerged through the triangulation of data sources and qualitative analysis in the software QSR NVivo 9. The first pattern which emerged indicated that scaffolding from within the game and outside the game requires a pause in game action to be effective, unless that scaffolding is directly useful to the player in the moment of action. The second major pattern indicated that both amount and type of prior gaming experience has somewhat complex effects on both the uses of supports and learning outcomes. In general, a high correlation was found between students who were more successful navigating supports from the game, the teacher, and the peer and higher gain scores from pre- to posttest. However, students with a lot of prior game experience that found the game to be easy without much assistance did not do as well from pre- to posttest as they did not need as much assistance from the game to do well and therefore missed out on important physics connections to impulse, force, and vectors. However, those students with little prior game experience did not find game scaffolds as useful and did not do as well from pre- to posttest without significant teacher and peer support to bolster or supplant the game's intended scaffolding. Implications for educators, educational game designers, and games in science education researchers are presented. It is argued that teachers must find ways to extract those scaffolds from the game which are easy to miss or require failure to activate so that all students, even those who find the game easy, are exposed to the intended learning in the game. Ideally, game designers are encouraged to find new ways to present scaffolds such that players of any ability can benefit from the connections from the game to physics.
4

Exploring the Impact of the Implementation of Reality Pedagogy: Self-efficacy, Social Capital, and Distributed Cognition

Taher, Tanzina January 2012 (has links)
As our current society becomes more and more dependent on science and technology, it calls for our students to be more science-oriented and involved in science. However, as statistics show, our urban students are not as engaged in science classes, resulting in poor performance in science. With this fact in mind, this study explores a recently developed pedagogic approach called reality pedagogy. In this qualitative ethnographic case study, the yearlong experience of six urban students enrolled in a science class of an urban public secondary school where the pedagogic tools of reality pedagogy were being implemented is examined. The study examines reality pedagogy via the lens of self-efficacy, social capital, and distributed cognition frames in order to understand the contribution the tools of reality pedagogy offer. Participants in this study included immigrant and non-immigrant urban science students as well as students with learning disabilities (LD) and students with no learning disabilities (NLD). Findings of this study revealed that participating in reality pedagogy facilitated the development of self-efficacy in science of three of the four students, where one was an LD student and two were NLD students. The experiences of all four of these students are discussed in detail. The study also revealed that the two immigrant participants of reality pedagogy were positively impacted, in that both students' shared social capital was positively impacted and the frame of distributed cognition played a role in their science classroom participation.
5

Relationships between Conceptual Knowledge and Reasoning about Systems: Implications for Fostering Systems Thinking in Secondary Science

Lyons, Cheryl January 2014 (has links)
Reasoning about systems is necessary for understanding many modern issues that face society and is important for future scientists and all citizens. Systems thinking may allow students to make connections and identify common themes between seemingly different situations and phenomena, and is relevant to the focus on cross-cutting concepts in science emphasized in the Framework for K-12 Science Education Standards (NRC, 2011) and Next Generation Science Standards (Achieve, 2013). At the same time, there is emerging empirical and theoretical support in science education for fostering the development of science reasoning alongside content understanding, as opposed to the perspective that reasoning occurs after a certain threshold of content mastery has been achieved. However, existing research on systems thinking has treated this reasoning as a set of universal skills and neglected the role of content, or has conceptualized a progression in which content mastery precedes systems reasoning without consideration of rudimentary forms of reasoning. This study focused on describing individual variations in the ways that 8th and 9th grade students reason about changes in a system over time to identify characteristics of systems and pre-systems thinking and to investigate the relationship between this reasoning and the students' application of content. This study found a generally linear relationship between content and reasoning, with interesting deviations from this trend among students who demonstrated at least a moderate level of content understanding but had not yet achieved mastery. Four profiles of this relationship emerged which warrant different instructional support. Implications are presented for science educators and developers of curricula and assessments. This includes recommendations for learning objectives, the design of written curriculum materials, and the development of assessments that aim to promote and measure reasoning about systems in science.
6

Multimodal Study Of Visual Problem Solving In Chemistry With Multiple Representations

Hansen, Sarah January 2014 (has links)
Visual problem solving with multiple representations is a critical component of chemistry learning and communication. Understanding how students comprehend and utilize visual representations is key to improving chemistry education, and a multimodal approach to understanding how students tackle visual stoichiometry problems offers insight into misconceptions and difficulties that they face. A mixed methods approach was used, employing multimodal data (eye-tracking, drawings, oral responses, and visual problem solving scores) to study participant interaction with representations and develop a framework for understanding college general chemistry students' metavisualization skills. Student performance during a PhET interactive simulation chemistry game was investigated using eye-tracking and qualitative analyses of a talk aloud protocol to isolate key mental blocks contributing to the participants' misconceptions. Cluster analysis and principal component analysis of gaze patterns revealed that participants follow coherent patterns when solving visual problems with multiple representations with respect to the equation, submicroscopic representations, and numbers provided in the question. Participants were divided into high and low score groups based on quantitative analysis of responses to key questions associated with the conservation of mass in stoichiometric analysis and the groups were further investigated using the of multimodal responses from individuals within each group. Eye-tracking and cluster analysis were found to be valuable tools for framing how students solve chemistry problems with multiple representations.
7

Science Specialists in Urban Elementary Schools: An Ethnography Examining Science Teaching Identity, Motivation and Hierarchy in a High-Stakes Testing Climate

Ronan, Darcy January 2014 (has links)
There are few studies exploring the impact and effectiveness of the science specialist model or its implementation specifically in urban schools. This ethnography explores the roles and responsibilities of science specialists in urban elementary schools, drawing upon interviews with the science specialists, classroom teachers, and building administrators to portray the science-teaching identity and characteristics of the science specialists according to Social Identity Theory (Gee, 2000-2001) as well as classroom teacher science-teaching motivation, according to Expectancy Theory (Vroom, 1964). In this role, specialists provide science instruction, curriculum coordination and communication, and support of classroom teachers. The expectations and limits of leadership from the science specialist are also discussed. The use of science specialists to provide pull-out instruction, wherein a classroom teacher drops off her class for instruction by the specialist, results in a decreased sense of classroom teacher instrumentality. This model of science specialist instruction can also undercut other science-teaching motivation components like expectancy of success, science-teaching identity, self-efficacy and valence for science teaching. Science specialist instruction in a pull-out model can result in teacher disengagement from science instruction. Additionally, hierarchies flowing from school and district-level policy and practice are described and analyzed according to how they mediate and are mediated by a science specialist model.
8

Uncovering Black/African American and Latina/o Students' Motivation to Learn Science: Affordances to Science Identity Development

Mahfood, Denise January 2014 (has links)
The following dissertation reports on a qualitative exploration that serves two main goals: (1) to qualitatively define and highlight science motivation development of Black/African American and Latina/o students as they learn science in middle school, high school, and in college and (2) to reveal through personal narratives how successful entry and persistence in science by this particular group is linked to the development of their science identities. The targeted population for this study is undergraduate students of color in science fields at a college or university. The theoretical frameworks for this study are constructivist theory, motivation theory, critical theory, and identity theories. The methodological approach is narrative which includes students' science learning experiences throughout the course of their academic lives. I use The Science Motivation Questionnaire II to obtain baseline data to quantitatively assess for motivation to learn science. Data from semi-structured interviews from selected participants were collected, coded, and configured into a story, and emergent themes reveal the important role of science learning in both informal and formal settings, but especially in informal settings that contribute to better understandings of science and the development of science identities for these undergraduate students of color. The findings have implications for science teaching in schools and teacher professional development in science learning.
9

On the Consideration of Adoption and Implementation of The Next Generation Science Standards in a Local-Control Context: Supporting the Epistemology of Science through Education Policy

Lazzaro, Christopher C. January 2015 (has links)
On the Consideration of Adoption and Implementation of The Next Generation Science Standards in a Local-Control Context: Supporting the Epistemology of Science through Education Policy Christopher C Lazzaro The primary purpose of this research is to understand how and why members at each of the three levels of the education system within a local-control state made the decisions they did in supporting or hindering the adoption and implementation of the Next Generation Science Standards. This research concentrates on three levels of the education system in a local-control state; 1) the state level 2) the district level, and 3) the school/teacher level, while investigating the following questions: 1. To what extent, and in what ways, do members in each of the three levels of the state education system advocate for adoption and implementation of the Next Generation Science Standards? 2. Are the members in each of the three levels motivated or compelled to consider adoption and implementation of the Next Generation Science Standards, why or why not? 3. To what extent, and in what ways, do the members in each of the three levels take into account science epistemology in their overall consideration of adoption/implementation of the NGSS? The data drew from a series of interviews from a prior study, "Challenges of Implementing the Next Generation Science Standards in Local-Control States in the U.S." (Sevian, Foster, and Scheff, 2012). After these data were coded and analyzed around the three research questions, this phenomenographic research study identified four key findings: Key Finding 1 - As the District Coordinators are uniquely situated within the state education system to be able to see both the on-the-ground practical implications and the high-level policy pressures of adopting and implementing the NGSS, they reflect the deepest level of awareness of how to best advocate for adoption and implementation of the NGSS. Key Finding 2 - Motivation to adopt and implement the NGSS is highly nuanced. The most significant factor influencing motivation to adopt or implement the NGSS at each level is related to assessment. The reasons assessment affects motivation is different at each level. Key Finding 3 - Each interviewee at each level demonstrated awareness that the NGSS are significantly different from prior standards in some way. While teachers and SSCs sometimes cited the science practices as the critical difference, they were not able to meaningfully elaborate on what "science practices" are. Conversely, the District Coordinators demonstrated a deeper level of awareness and were able to comment more specifically on the practices and how they would affect science education in their state. Key Finding 4 - Regardless of level, the better a participant reflected an awareness of epistemology, the more likely they were to advocate for adoption and implementation of the NGSS. Similarly, the better a participant reflected an awareness of epistemology, the more likely they were motivated to consider adoption and implementation of the NGSS. The implications of the findings in this current study can; inform the supplemental materials and dissemination of information by standards writers, help policy makers engage stakeholders appropriately at each level by illustrating how national reform efforts play out in local-control states, and aid school based employees by identifying how and where they can participate in state level policy discussion and where their input could be valuable.
10

Science Teachers' Perceptions of the Relationship between Game Play and Inquiry Learning

Mezei, Jessica M. January 2015 (has links)
The implementation of inquiry learning in American science classrooms remains a challenge. Teachers’ perceptions of inquiry learning are predicated on their past educational experiences, which means outdated methods of learning may influence teachers’ instructional approaches. In order to enhance their understanding and ultimately their implementation of inquiry learning, teachers need new and more relevant models. This study takes a preliminary step exploring the potential of game play as a valuable experience for science teachers. It has been proposed that game play and inquiry experiences can embody constructivist processes of learning, however there has been little work done with science teachers to systematically explore the relationship between the two. Game play may be an effective new model for teacher education and it is important to understand if and how teachers relate game playing experience and knowledge to inquiry. This study examined science teachers’ game playing experiences and their perceptions of inquiry experiences and evaluated teacher's recognition of learning in both contexts. Data was collected through an online survey (N=246) and a series of follow-up interviews (N=29). Research questions guiding the study were: (1) What is the nature of the relationship between science teachers’ game experience and their perceptions of inquiry? (2) How do teachers describe learning in and from game playing as compared with inquiry science learning? and (3) What is the range of similarities and differences teachers articulate between game play and inquiry experiences? Results showed weak quantitative links between science teachers’ game experiences and their perceptions of inquiry, but identified promising game variables such as belief in games as learning tools, game experiences, and playing a diverse set of games for future study. The qualitative data suggests that teachers made broad linkages in terms of parallels of both teaching and learning. Teachers mostly articulated learning connections in terms of the active or participatory nature of the experiences. Additionally, a majority of teachers discussed inquiry learning in concert with inquiry teaching which led to a wider range of comparisons made based on the teacher’s interpretation of inquiry as a pedagogical approach instead of focusing solely on inquiry learning. This study has implications for both research and practice. Results demonstrate that teachers are interested in game play as it relates to learning and the linkages teachers made between the domains suggests it may yet prove to be a fruitful analogical device that could be leveraged for teacher development. However, further study is needed to test these claims and ultimately, research that further aligns the benefits of game play experiences to teacher practice is encouraged in order to build on the propositions and findings of this thesis.

Page generated in 0.0683 seconds