• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 639
  • 175
  • 45
  • 22
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 13
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 1087
  • 1087
  • 1087
  • 565
  • 296
  • 192
  • 192
  • 191
  • 186
  • 185
  • 183
  • 181
  • 176
  • 176
  • 160
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Sounding Out Science: Incorporating Audio Technology to Assist Students with Learning Differences in Science Education

Gomes, Clement January 2014 (has links)
With the current focus to have all students reach scientific literacy in the U.S, there exists a need to support marginalized students, such as those with Learning Disabilities/Differences (LD), to reach the same educational goals as their mainstream counterparts. This dissertation examines the benefits of using audio assistive technology on the iPad to support LD students to achieve comprehension of science vocabulary and semantics. This dissertation is composed of two papers, both of which include qualitative information supported by quantified data. The first paper, titled Using Technology to Overcome Fundamental Literacy Constraints for Students with Learning Differences to Achieve Scientific Literacy, provides quantified evidence from pretest and posttest analysis that audio technology can be beneficial for seventh grade LD students when learning new and unfamiliar science content. Analysis of observations and student interviews support the findings. The second paper, titled Time, Energy, and Motivation: Utilizing Technology to Ease Science Understanding for Students with Learning Differences, supports the importance of creating technology that is clear, audible, and easy for students to use so they benefit and desire to utilize the learning tool. Multiple correlation of Likert Survey analysis was used to identify four major items and was supported with analysis from observations of and interviews with students, parents, and educators. This study provides useful information to support the rising number of identified LD students and their parents and teachers by presenting the benefits of using audio assistive technology to learn science.
92

Changes in Urban Youths' Attitude Towards Science and Perception of a Mobile Science Lab Experience

Fox, Jared January 2015 (has links)
This dissertation examined changes in urban youth's attitude towards science as well as their perception of the informal science education setting and third space opportunity provided by the BioBus, a mobile science lab. Science education researchers have often suggested that informal science education settings provide one possible way to positively influence student attitude towards science and engage marginalized urban youth within the traditional science classroom (Banks et al., 2007; Hofstein & Rosenfeld, 1996; National Research Council, 2009; Schwarz & Stolow, 2006; Stocklmayer, Rennie, & Gilbert, 2010). However, until now, this possibility has not been explored within the setting of a mobile science lab nor examined using a theoretical framework intent on analyzing how affective outcomes may occur. The merits of this analytical stance were evaluated via observation, attitudinal survey, open-response questionnaire, and interview data collected before and after a mobile science lab experience from a combination of 239 students in Grades 6, 8, 9, 11, and 12 from four different schools within a major Northeastern metropolitan area. Findings from this study suggested that urban youth's attitude towards science changed both positively and negatively in statistically significant ways after a BioBus visit and that the experience itself was highly enjoyable. Furthermore, implications for how to construct a third space within the urban science classroom and the merits of utilizing the theoretical framework developed to analyze cultural tensions between urban youth and school science are discussed. Key Words: Attitude towards science, third space, mobile science lab, urban science education
93

Facilitating Cultural Border Crossing in Urban Secondary Science Classrooms: A Study of Inservice Teachers

Monteiro, Anna Karina January 2015 (has links)
Research acknowledges that if students are to be successful science, they must learn to navigate and cross cultural borders that exist between their own cultures and the subculture of science. This dissertation utilized a mixed methods approach to explore how inservice science teachers working in urban schools construct their ideas of and apply the concepts about the culture of science and cultural border crossing as relevant to the teaching and learning of science. The study used the lenses of cultural capital, social constructivism, and cultural congruency in the design and analysis of each of the three phases of data collection. Phase I identified the perspectives of six inservice science teachers on science culture, cultural border crossing, and which border crossing methods, if any, they used during science teaching. Phase II took a dialectical approach as the teachers read about science culture and cultural border crossing during three informal professional learning community meetings. This phase explored how teachers constructed their understanding of cultural border crossing and how the concept applied to the teaching and learning of science. Phase III evaluated how teachers' perspectives changed from Phase I. In addition, classroom observations were used to determine whether teachers' practices in their science classrooms changed from Phase I to Phase III. All three phases collected data through qualitative (i.e., interviews, classroom observations, and surveys) and quantitative (Likert items) means. The findings indicated that teachers found great value in learning about the culture of science and cultural border crossing as it pertained to their teaching methods. This was not only evidenced by their interviews and surveys, but also in the methods they used in their classrooms. Final conclusions included how the use of student capital resources (prior experiences, understandings and knowledge, ideas an interests, and personal beliefs), if supported by science practices and skills increases student cultural capital. With a greater cultural capital, the students experience cultural congruency between their cultures and the culture of science, enabling them to cross such borders in the science classroom. The implications such findings have on teacher training programs and professional development are discussed.
94

Examining the Relationship between Physical Models and Students' Science Practices

Miller, Alison Riley January 2015 (has links)
Scientists engage with practices like model development and use, data analysis and interpretation, explanation construction, and argumentation in order to expand the frontiers of science, so it can be inferred that students’ engagement with science practices may help them deepen their own science understanding. As one of three dimensions on which the Next Generation Science Standards is built, science practices are recognized as an important component of science instruction. However, the contexts in which these practices happen are under-researched. Furthermore, research on science practices among students tends to focus on one or two practices in isolation when, in reality, students and scientists tend to engage with multiple overlapping practices. This study focused on identifying and characterizing multiple science practices as eighth and ninth-grade Earth Science students participated in a small group collaborative problem solving activity both with and without the use of a physical model. This study found a range of sophistication in the observed science practices as well as a relationship between the frequency of those practices and the accuracy of the groups’ outcomes. Based on this relationship, groups were assigned to one of three categories. Further analysis revealed that model use varied among the three categories of groups. Comparisons across these three group categories suggest that there may be a bootstrapping relationship between students’ engagement with science practices and the development of their content understanding. This metaphor of bootstrapping is used to represent how students may develop deeper science content understanding through engagement with science practices and concurrently develop greater facility with science practices as they learn science content. Implications are presented for curriculum designers, teachers and teacher educators. These include recommendations for curriculum design that encourage structured opportunities for small group engagement with science practices as well as recommendations for assessment of students’ reasoning while they engage with science practices within small group collaborative contexts.
95

Effects of Pre-reading Instructions on the Comprehension of Science Texts

Lyons, Yuna H. January 2017 (has links)
This study examined how three different pre-reading (or relevance) instructions led to different learning outcomes for middle school students reading science texts on the topic of sweetness. The first was a generic instruction to read for understanding. The second prompted students to form a holistic explanation of the topic of sweetness, and the third instruction prompted students to focus on the core scientific principle of the relationship between structure and function. The latter two were specifically designed to align with science disciplinary goals. A comparison of the three treatments found that the generic instruction and the structure-function instruction led to better learning outcomes, measured by recall, short-answer performance questions, and a traditional multiple-choice/short-answer assessment. A qualitative analysis of the data also revealed some small yet notable differences in the recall pattern of students, such as an increased recall of key ideas for the structure-function instruction. This effect was seen predominantly for higher-skilled readers. The results suggest the possibility that relevance instructions targeting core ideas may help to orient students to the key ideas and explanations in scientific text, especially for higher-skilled readers, and indirectly highlights some of the challenges for students with less reading competencies. Overall, this study provides greater insight into how middle-school students read science texts, the effectiveness of instructor-provided relevance instructions in promoting (higher-level) comprehension of science texts, and implications for teachers on how to use texts in science instruction.
96

Integration of Culturally Relevant Pedagogy into the Science Learning Progression Framework

Bernardo, Cyntra January 2017 (has links)
This study integrated elements of culturally relevant pedagogy into a science learning progression framework, with the goal of enhancing teachers’ cultural knowledge and thereby creating better teaching practices in an urban public high school science classroom. The study was conducted using teachers, an administrator, a science coach, and students involved in science courses in public high school. Through a qualitative intrinsic case study, data were collected and analyzed using traditional methods. Data from primary participants (educators) were analyzed through identification of big ideas, open coding, and themes. Through this process, patterns and emergent ideas were reported. Outcomes of this study demonstrated that educators lack knowledge about research-based academic frameworks and multicultural education strategies, but benefit through institutionally-based professional development. Students from diverse cultures responded positively to culturally-based instruction. Their progress was further manifested in better communication and discourse with their teacher and peers, and increased academic outcomes. This study has postulated and provided an exemplar for science teachers to expand and improve multicultural knowledge, ultimately transferring these skills to their pedagogical practice.
97

Assessing Bilingual Knowledge Organization in Secondary Science Classrooms

Wu, Jason Sun January 2017 (has links)
Improving outcomes for English language learners (ELLs) in secondary science remains an area of high need. The purpose of this study is to investigate bilingual knowledge organization in secondary science classrooms. This study involved thirty-nine bilingual students in three biology classes at a public high school in The Bronx, New York City. Methods included an in-class survey on language use, a science content and English proficiency exam, and bilingual free- recalls. Fourteen students participated in bilingual free-recalls which involved a semi-structured process of oral recall of information learned in science class. Free-recall was conducted in both English and Spanish and analyzed using flow-map methods. Novel methods were developed to quantify and visualize the elaboration and mobilization of ideas shared across languages. It was found that bilingual narratives displayed similar levels of organizational complexity across languages, though English recalls tended to be longer. English proficiency was correlated with narrative complexity in English. There was a high degree of elaboration on concepts shared across languages. Finally, higher Spanish proficiency correlated well with greater overlapping elaboration across languages. These findings are discussed in light of current cognitive theory before presenting the study’s limitations and future directions of research.
98

Partnerships between secondary/elementary science teachers and laboratory-based scientists : delineating best practices

Henderson, Sandra 19 July 2001 (has links)
Given the high probability of national and federal research laboratories continuing to sponsor science education partnerships between their staff and classroom science teachers and the dearth of research in this area, this study set out to delineate best practices associated with such partnerships for the purpose of increasing the effectiveness of future partnerships. This investigation critically examined two science education partnerships at selected federal research laboratories over the course of summer workshops and the subsequent academic year. Sources of data included interviews, workshop observations, electronic mail communication, written program evaluations, and casual conversation. A unique feature of this research was the inclusion of all representative groups including program administrators, laboratory scientists, and the participating classroom teachers. By capturing the perspectives of all participant groups, this research was able to present a complete portrayal of science education partnerships at two national research laboratories. The longitudinal nature of this investigation allowed for all components of each program (e.g. planning, organization, implementation, evaluation, and follow-up) to be included in the research. The determination of best practices in science education partnerships provided the framework for this research which clearly showed the underlying importance of the need for all participants to understand the goals and what is expected of them before the program gets underway. To be achievable, individual and programmatic expectations must be in alignment with the overall goals of a program. To be attainable, the goals must be understood by all and provide a framework for the expectations. Without a clear and shared vision of a programs direction, goals and expectations are not likely to be fulfilled. The common thread for each of these components is communication and its importance during all stages of a program cannot be overstated. Additional findings suggest a variety of areas that should be considered important in science education partnerships. Insight into effective classroom transfer, the role of lead teachers, the role of scientists and science content, and program evaluation was developed as a result of this study. / Graduation date: 2002
99

Managing subject matter : does it really matter?

Latz, Mark S. 15 November 1995 (has links)
The purpose of this study was to identify the management demands that may be unique to science classrooms. The sample consisted of three biology teachers and three language arts teachers from two high schools located within the same school district. To establish a basic framework, two quantitative questions were addressed: (1) What is the frequency of contexts utilized in the two content areas and (2) what is the average amount of time spent in each of the contexts based on the content being presented? For each quantitative question, there are 16 null hypotheses that correspond to specific, predefined classroom contexts. In addition to the two quantitative questions, a qualitative research question was addressed: Are there specific management patterns to be emphasized based on the context and subject matter being presented? Data from classroom observations were collected and coded utilizing methods described in previous research studies. The coded data were then statistically analyzed. To address the qualitative research question, a systematic qualitative analysis was conducted across the different contexts. The results show that seatwork, group seatwork, and student presentations occurred with significantly greater (p<.05) frequency in language arts classes. In contrast, hands-on activities, non-academic activity, and dead time occurred more frequently in biology classes. In addition, in language arts classes a significantly longer average time in individual seatwork activites was evident; while in biology classes, a significantly greater average time was spent in lecture, tests, and transitions. Qualitative analysis of the data indicated that within any given classroom context, the classroom management behaviors of the teachers were consistent. In general, subject matter differences are not revealed directly in terms of management within a particular context. More importantly the instructional approaches taken within the two subject matter areas were different. The instructional approach was determined by the goals and objectives of the class and how the teacher viewed the subject matter. The instructional approach, in turn, dictated the types of contexts and each context determined the management demands. / Graduation date: 1996
100

Interactive relationships among teachers' intentions, beliefs, pedagogical content knowledge and classroom instruction on the natureof science

Kwan, Jenny., 關幸欣. January 2011 (has links)
published_or_final_version / Education / Doctoral / Doctor of Philosophy

Page generated in 0.1066 seconds