• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 92
  • 24
  • 23
  • 20
  • 18
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 250
  • 47
  • 42
  • 40
  • 40
  • 35
  • 27
  • 27
  • 25
  • 23
  • 21
  • 19
  • 18
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Optimisation Of Ionospheric Scintillation Model Used In Radio Occultation

Boryczko, Marta, Dziendziel, Tomasz January 2016 (has links)
This thesis is executed in cooperation with RUAG Space AB, which specializes in highly reliable on-board satellite equipment. The thesis focuses on the effect, which disturbs the amplitude and phase of a Global Positioning System (GPS) signal, called scintillation effect. It has a substantial impact on a GPS signal, during Radio Occultation (RO). RO is a method of analysis of a refracted signal which passes through the atmosphere. RO can be used for measuring climate change and for weather forecasting. By retrieving the bending angle of a GPS signal, three basic parameters of the Earth’s atmosphere can be obtained at different heights: temperature, pressure and humidity. As the scintillation effect causes prominent errors in the bending angle calculations, it is crucial to provide possibly the most precise mathematical model, which allows to conceive proper ionospheric corrections. In this thesis, the model using Rytov approach is implemented and optimised with different optimisation functions. It is shown that the scintillation model can be optimized, which may contribute to a more accurate retrieval of the atmospheric profiles.
62

Syntheses and Investigations of Photo and Radioluminescent Stilbene- and Anthracene- Based Lanthanide Metal-Organic Frameworks

Mathis, Stephan Roy, II 16 May 2016 (has links)
This research explores the synthesis of anthracene and stilbene-based metal-organic framework (MOF) structures as potential scintillating (radioluminescent) materials for use in the detection of gamma radiation. The organic molecules 9,10-anthracenedicarboxylic acid (ADCH2) and trans-4,4’-stilbenedicarboxylic acid (SDCH2), were each used as a linker, in combination with a range of lanthanide metal ions, to synthesize novel three dimensional MOF structures under hydrothermal conditions. With ADCH2, the early period lanthanides yield isostructures with the metal ion in higher coordination (nine) than for those with late period metals (seven). The ADC-MOFs show linker-based photoluminescence properties with well defined vibronic peaks in their emission profile and their emission (λmax~435 nm) blue shifting from that of the ADCH2 powder (~500 nm) and closer to the organic molecule in monomer arrangement (λmax ~ 420 nm). The structures also show photoluminescence lifetimes between 1 and 2 ns, which is similar to the reported value for monomeric anthracene units. The blue-shift and reduction in lifetime, compared to ADCH2, are indicative of minimal π-π interactions amongst the aromatic moieties, thereby limiting the non-radiative relaxation pathways. On exposure to ionizing radiation (protons and g- rays), the ADC-MOFs demonstrated scintillation properties, with a radioluminescence lifetime of ~ 6 ns which is similar to that of the ADCH2 powder. A combination of SDCH2 and lanthanide metal ions produced two isostructured MOFs containing Tm3+ and Er3+, under the hydrothermal synthesis conditions explored. The 3-D structure contained ultra large diamond-shaped pores with dimensions of 16 Å x 30 Å. A blue-shift of fluorescence spectra was observed for the SDC-MOF structures (λmax ~ 425 nm) compared to that of bulk SDCH2 powder (λmax ~475 nm), and closely resembling that of monomeric isolated SDC units (λmax~475 nm). Their photoluminescence lifetime is ~0.76 ns, about half of that observed for SDCH2 powder. The blue shift and reduction in lifetime (compared to SDCH2) is attributed to minimal π-π interactions between SDC units in the MOF structure, thus minimizing associated non-radiative relaxation pathways. The isolation of anthracene and stilbene in MOF structures therefore has the potential to improve their performance as scintillators.
63

Caracterização do dosímetro de antraceno para radiação de fótons radioterápica / Anthracene Dosimeter Characterization under Radiotherapic Photons.

Czelusniak, Caroline 27 October 2011 (has links)
A dosimetria na radioterapia é realizada periodicamente como parte do controle de qualidade tanto dos equipamentos como dos tratamentos dos pacientes. O dosímetro convencional utilizado para essa finalidade é a câmara de ionização, no entanto, ela pode apresentar limitações quando se necessita de um dosímetro que possua resoluções espacial e temporal altas. Este trabalho tem como objetivo a caracterização do dosímetro de antraceno para radiação de fótons radioterápicos. O antraceno é um cristal orgânico cintilador com vantagens de ser praticamente equivalente à água e tecido mole em feixes radioterápicos e com possibilidade de possuir volume de detecção e tamanho pequenos, para utilizar em radiocirurgia e dosimetria in vivo. Neste trabalho, a caracterização do dosímetro de antraceno foi realizada obtendo-se o sinal de cintilação em função da sua granulosidade média, diâmetro da sua cápsula interna, dose absorvida, taxa de dose absorvida, energia do feixe de radiação e sua resolução espacial, sendo essa última realizada por três métodos diferentes relacionados e equivalentes: (função de espalhamento de borda (FEB), função de espalhamento linear (FEL) e função de transferência de modulação (MTF)). Os feixes de fótons utilizados para as irradiações do cintilador foram os de 60 Co (1,25 MeV), 137 Cs (0,661 MeV) e raios X (energias efetivas de 28,4; 46,5; 48,5; 94,0 e 106,0 keV). A instrumentação utilizada para a detecção do sinal do cintilador foi composta por uma fibra óptica, fotomultiplicadora, fonte de alta tensão, eletrômetro e multímetro. Dos dados obtidos, a contribuição da radiação Cerenkov, produzida na fibra óptica, foi subtraída, e as seguintes características dos sinais resultantes puderam ser inferidas: quanto maior a granulosidade maior o sinal de cintilação detectado; a dependência do sinal com o diâmetro interno da sua cápsula aumenta proporcionalmente com o cubo do diâmetro; dependência linear do sinal com a dose absorvida; independência com a taxa de dose absorvida; dependência linear para baixas energias e independência para altas energia do feixe. Além disso, das resoluções espaciais encontradas pelos três métodos diferentes, aquela calculada pelo método MTF é a que mais se aproximou das dimensões do detector (1,6 mm), tendo sido obtido um valor igual a 1,43+/-0,07 mm. Dos resultados foi possível caracterizar o dosímetro de antraceno de modo que sua utilização em trabalhos futuros seja mais adequada. / New radiotherapy techniques such as intensity-modulated radiation therapy and stereotactic radiosurgery have increased the need for dosimeters that can provide measurements in real time with high spatial resolution. Organic scintillation dosimeters are able to measure with accuracy small radiation fields and fields with high gradients, besides having advantages such as water and soft tissue equivalence and the possibility to be used in vivo. Anthracene is an organic scintillator crystal with the highest known scintillation efficiency among organic scintillation materials. The objective of this work is to characterize the antracene as a dosimeter under radiotherapic photons energies, analysing its signal against average granulosity, intern capsule diameter, absorbed dose, absorbed dose rate, photon energy and its spatial resolution; with the last one analysed under three methods (edge spread function, line spread function and modulation transfer function). The photons energies used were 1.25 MeV ( 60 Co), 0.661 MeV ( 137 Cs) and X-rays (effective energies of 28.4; 46.5; 48.5; 94.0 e 106.0 keV). The scintillation detection system consisted of an optical fiber with one end attached to the anthracene capsule and the other to a photomultiplier tube mantained by power supply followed by an electrometer. Once Cerenkov radiation occurs in the optical fiber, it was removed from the total scintillation signal trough the subtraction of the signal, taken irradiating the optical fiber without the anthracene attached to one of its extremity. From results obtained, one can infer that the dosimeter signal increases proportionally with average granulosity and intern capsule diameter. The signal is linearly dependent of absorbed dose, linearly dependent of low photons energies and independent for high photons energies, as well as independent of the absorbed dose rate. From the spatial resolution values obtained it was possible to infer that the one obtained through modulation transfer function, 1.43+/-0.07 mm, was the one that approximated the most to the actual dosimeter physical size (1.6 mm). From the characteristics obtained with this work, we think that future projects involving the anthracene will be carried out more properly.
64

Dosimetria por cintilação utilizando imagens adquiridas com câmera digital / Scintillation dosimetry using images acquired with digital camera

Biagioni, Fernanda Guzzi 25 May 2018 (has links)
A utilização de detectores de radiação é de imensa importância na área de dosimetria, pois permite a quantificação da dose absorvida no meio. Uma técnica interessante para esta finalidade é o uso de detectores por cintilação. Estudos recentes com cintiladores plásticos e líquidos demonstraram a viabilidade do uso de detecção de cintilação por uma câmera digital com sensor CCD ou CMOS. Desse modo, este trabalho tem como objetivo desenvolver um dosímetro cintilador de baixo custo para viabilidade de seu uso e, de um sistema de detecção de cintilação através de uma câmera digital, para que assim pudesse ser realizada sua caracterização dosimétrica. O sistema dosimétrico foi construído a partir de um cintilador líquido a base de antraceno. Dosimetricamente verificou-se uma linearidade de resposta para a dose de 0,1 a 25,53 Gy, para a taxa de dose de 6,66 Gy/min e uma pequena diminuição da sensibilidade do dosímetro quando aumentada a taxa de dose de irradiação. Com relação à dependência energética, foi verificado um aumento na sensibilidade do dosímetro de 10,8% ao se variar a energia de 100 a 160 kVp. Quando comparado a um cintilador comercial, apresentou uma intensidade de sinal reduzida e, em uma análise de reprodutibilidade, obteve-se uma variação máxima de 2% em relação a repetição de uma mesma medida. O cintilador líquido apresentou baixa estabilidade pré e pós-irradiação, com uma variação de cor e redução do sinal ao decorrer dos dias. Para medidas bidimensionais o sistema montado mostrou-se promissor, uma vez que em medidas de deposição de dose com a profundidade para várias energias de feixes, verificou-se o aumento da penetração da radiação com o aumento da energia do feixe e as medidas de penumbra de um feixe parcialmente blindado com 2 mmPb apresentaram um valor de 1,79 cm, considerando o tipo de tubo gerador e blindagem utilizada. Por toda a caracterização realizada o sistema dosimétrico mostrou-se aplicável para dosimetria, desde que operado considerando as características apresentadas. / The utilization of radiation detector is important in the dosimetric area, because it allow the quantification of absortion dose in the medium. An interesting tehnique for this finalitypurpose is the use of scintillation detector. Recent studies with plastic scintillators and liquid scintillators have demonstrated the feasibility of using scintillation detection by a digital camera with CCD or CMOS sensors. Thus, this study is the intent to develop a low-cost scintillation dosimeter for the feasibility of its use and detection scintillation system through by a digital camera, with the finality of dosimetric characterization. The dosimetric system was constructed from using liquid scintilator based anthracene. A linearity dose response between 0.1 to 25.53 Gy was found for the dose rate of 6.66 Gy/min and the dosimeter sensibility was decreased when the dose rate increased. When varied the energy from 100 to 160 kVp, was verified an increased of 10.8% in the dosimeter sensibility, due the energy dependence. When compared to a commercial dosimeter, it shows signal intensity decreased and, the study of reproducibility, a maximum variation of 2% was obtained in relation to the repetition of the same measure. The liquid scintillator presented low stability before and after irradiation, with a color variation and signal reduction over the days. For two-dimensional measurements the assembled system proved to be promising, since in dose deposition measurements with the depth for several beam energies, the penetration of the radiation was increased with the increase of the beam energy and the penumbra measurements of a narrow beam with 2mmPb presented a value of 1.79 cm, considering the type of generator tube and narrow used. Throughout the characterization carried out the dosimetric system proved to be applicable for dosimetry, if operated considering the characteristics presented.
65

Setting limits on the power of a geo-reactor with KamLAND detector

Maricic, Jelena. January 2005 (has links)
Thesis (Ph. D.)--University of Hawaii at Manoa, 2005. / Includes bibliographical references (leaves 129-135).
66

DESIGN AND CONSTRUCTION OF A MODULAR GAMMA CAMERA (NUCLEAR)

Milster, Thomas Dean, 1958- January 1987 (has links)
The Anger camera has been used for the last quarter century in many areas of science to image gamma radiation. Some typical applications include medicine, where functionality of organs are studied in vivo, and industrial inspection of fuel rods for nuclear reactors. The standard Anger geometry includes a large scintillation crystal, light guide, photomultiplier array, and analog processing electronics. Even the most modern gamma cameras built today still use the standard Anger design. The work presented here describes an alternative to the standard gamma-camera design that is flexible enough to be used in a wide variety of applications. Especially in single-photon emmission computed tomography (SPECT) applications, the new design has the potential to be more efficient than the standard design. The new design is modular, that is, several small, separate units comprise a system. Each unit consists of a small gamma camera that is optically and electronically independent from other units. The units, called "modular cameras," can be configured around the region of interest so as to provide the maximum amount of information for reconstruction algorithms or direct information to the operator. The theoretical and experimental investigation of this report focuses on the design and construction of the modular cameras. Each modular camera is, in esscence, a small Anger camera. Components of each module include a scintillation crystal, a light guide, and an array of four photomultiplier tubes. Instead of an analog processing network, each module utilizes fast digital circuitry which includes direct analog-to-digital conversion of the photomultiplier signals, a lookup table which maps detector responses to position estimates of the scintillation flashes in the crystal, and an image memory which accumulates the position estimates and forms an image of the radiation incident on the faceplate of the camera. The digital electronics are necessary because analog techniques fail to give satisfactory estimates of scintillation position when the flashes occur near the sides of the crystal. The contents of the lookup table are determined from the statistical properties of the detected signals as a function of scintillation position. Experiments are described in which "best" estimates of position are found by processing data collected from an array of point-source positions in contact with the crystal. Alternative methods for construction of the lookup table are also discussed, which involve computer generation of the estimates. Both maximum-likelihood and mimimum-mean-square-error estimation rules are used, and the results are compared. A mathematical bound on the performance of the estimators is calculated assuming Poisson statistics for the detection process. The bound, which is a Cramer-Rao lower bound, is used to compare module geometries before lookup tables are constructed. A one-dimensional module, which accumulates information along one axis of the faceplate, is designed first. The one-dimensional module provides proof-of-principle evidence for the estimation techniques and is used to determine critical parameters for modular-camera design. The results of the experiments with the one-dimensional camera are extended to two-dimensional designs, which yield position estimates along both axes of the camera faceplate. Several two-dimensional cameras are tested, and an optimum geometry is constructed and tested for spatial resolution and bias of the estimators.
67

Fabrication of Polystyrene Core-Silica Shell Nanoparticles for Scintillation Proximity Assay (SPA) Biosensors

Noviana, Eka January 2015 (has links)
The development of analytical tools for investigating biological pathways on the molecular level has provided insight into diseases and disorders. However, many biological analytes such as glucose and inositol phosphate(s) lack the optical or electrochemical properties needed for detection, making molecular sensing challenging. Scintillation proximity assay (SPA) does not require analytes to possess such properties. SPA uses radioisotopes to monitor the binding of analytes to SPA beads. The beads contain scintillants that emit light when the radiolabeled analytes are in close proximity. This technique is rapid, sensitive and separation-free. Conventional SPA beads, however, are large relative to the cells and made of hydrophobic organic polymers that tend to aggregate or inorganic crystals that sediment rapidly in aqueous solution, thus limiting SPA applications. To overcome these problems, polystyrene core-silica shell nanoparticles (NPs) doped with pTP and dimethyl POPOP were fabricated to produce scintillation NPs that emit photons in the blue region of visible light. The developed scintillation particles are approximately 250 nm in diameter (i.e. 200 nm of core diameter and 10-30 nm of shell thickness), responsive to β-decay from tritium (³H) and have sufficient stability in the aqueous media. DNA hybridization-based SPA was performed to determine whether the scintillation NPs could be utilized for SPA applications. A 30-mer oligonucleotide was immobilized on the polystyrene core-silica shell NPs to give approximately 7.6 x 10³ oligonucleotide molecules per NP and ³H-labeled complementary strand was annealed to the immobilized strand. At the saturation point, increases in scintillation signal due to oligonucleotide binding to the NPs were about 9 fold compared to the control experiments in which no specific binding occurred, demonstrating that the scintillation NPs can be utilized for SPA. Along with the improved physical properties including smaller size and better stability in the aqueous system, the developed scintillation NPs could be potentially useful as biosensors in cellular studies.
68

Characterization of LaBr3(Ce) Detectors for Picosecond Lifetime Measurements

Michetti-Wilson, Julian 10 May 2013 (has links)
There has been a great deal of interest in the use of LaBr3 (Ce) detectors for fast timing measurements. Due to their excellent energy resolution, ≈ 3% at 1MeV, they offer an improved signal to background over BaF2 which has ≈ 9% energy resolution. Many groups are planning arrays of LaBr3 detectors. The 8π collaboration has recently acquired a small array of 6 2”x 2” cylindrical LaBr3 detectors to replace its BaF2 detectors. We have been investigating the effects of detector-to-detector scattering on timing resolution. We have further investigated the use of Compton-suppression shields with LaBr3 detectors. This will also be the first testing of the DANTE acquisition system in the 8π. A summary of the results of our optimization, scattering studies, and Compton-suppression tests will be presented.
69

Validation of a simulation model of intrinsic 176-Lu activity in LSO-based preclinical PET systems

McIntosh, Bryan 07 April 2011 (has links)
The LSO scintillator crystal commonly used in PET scanners contains a low level of intrinsic radioactivity due to a small amount of Lu-176. This is not usually a concern in routine scanning but can become an issue in small animal imaging, especially when imaging low tracer activity levels. Previously there had been no systematic validation of simulations of this activity; this thesis discusses the validation of a GATE model of intrinsic Lu-176 against results from a bench-top pair of detectors and a Siemens Inveon preclinical PET system. The simulation results matched those from the bench-top system very well, but did not agree as well with results from the complete Inveon system due to a drop-off in system sensitivity at low energies that was not modelled. With this validation the model can now be used with confidence to predict the effects of Lu-176 activity in future PET systems.
70

Direction measurement capabilities of the LEDA cosmic ray detector

Bultena, Sandra Lyn January 1988 (has links)
No description available.

Page generated in 0.1045 seconds