• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 9
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 101
  • 22
  • 22
  • 17
  • 17
  • 16
  • 16
  • 15
  • 15
  • 14
  • 11
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Radioluminescence : A simple model for fluorescent layers

Lindström, Jan January 2011 (has links)
The aim of this thesis is to present a simple model for the radiation to light conversion processes in fluorescent layers as an aid in future developments and applications. Optimisation between sensitivity and spatial resolution for fluorescent layers in digital radiology is a delicate task where the extrinsic efficiency for various phosphors needs to be established for varying parameters. The extrinsic efficiency of a fluorescent layer can be expressed as the ratio of the light energy per unit area at the screen surface to the incident xray energy fluence. Particle size is a critical factor in determining the value of the extrinsic efficiency, but in most models it is not treated as an independent variable. Based on the definition of a light extinction factor (ξ), a model is proposed such that, knowing the intrinsic efficiency η, the particle size and the thickness of a certain make of screen, the extrinsic efficiency can be calculated for an extended range of particle sizes and / or screen thicknesses. The light extinction factor ξ is an optical parameter determined from experimental data on extrinsic efficiency. The proposed model is compared to established methods. Further experiments have confirmed the validity of the model. Monte-Carlo simulations have been utilised to refine the calculations of energy imparted to the phosphor by taking into account the escape of scattered and K-radiation generated in the screen and interface effects at the surfaces. The luminance was measured for a set of in-house manufactured screens of varying thicknesses and particle sizes. Utilising the proposed model, the corresponding calculated values deviated ± 14 %.within the studied range.
62

DISCOVERY AND DEVELOPMENT OF RARE EARTH ACTIVATED BINARY METAL HALIDE SCINTILLATORS FOR NEXT GENERATION RADIATION DETECTORS

Yang, Kan 01 August 2011 (has links)
This work focuses on discovery and development of novel binary halide scintillation materials for radiation detection applications. A complete laboratory for raw materials handling, ampoule preparation, material rapid synthesis screening, single crystal growth, sample cutting, polishing and packaging of hygroscopic halide scintillation materials has been established. Ce3+ and Eu2+ activated scintillators in three binary systems: Alkali Halide – Rare Earth Halide (AX–REX3), Alkali Halide – Alkaline Earth Halide (AX–AEX2) and Alkalin Earth Halide – Rare Earth Halide (AEX2–REX3) were systematically studied. Candidates for new scintillation materials in the three systems were selected based on a set of selection rules. A total of 42 Ce3+ or Eu2+ activated binary halide scintillation material candidates were synthesized and characterized. Among all synthesized candidates, 10 - 15 candidate materials were found to be highly promising in terms of high scintillation light output, fast scintillation decay or desirable emission wavelength. Three most promising candidates, Cs3EuI5, CsGd2Cl7:Ce3+ and CsSrI3:Eu2+ were selected for single crystal growth and further evaluation. Technologies for single crystal growth of hygroscopic halide scintillation materials were developed. Detailed design of experimental apparatuses was discussed. Single crystals were successfully grown via Bridgman or Vertical Gradient Freeze techniques. Study on optical and scintillation properties was performed. Possibility of using CsGd2Cl7:Ce3+ as a neutron detector was confirmed. CsSrI3:Eu2+ shows extraordinary scintillation light output (73,000 ph/MeV), excellent energy resolution (3.9%) and ease for crystal growth. A scaled-up crystal growth was carried out. A bulk crystal of 1” diameter CsSrI3:Eu2+ was successfully grown. Energy level structure and charge carrier traps in CsSrI3:Eu2+ were investigated. Potential of CsSrI3:Eu2+ in various radiation detection applications were evaluated.
63

Thin Film Combinatorial Synthesis of Advanced Scintillation Materials

Peak, Jonathan Daniel 01 December 2010 (has links)
The development and application of a combinatorial sputtering thin film technique to screen potential scintillation material systems was investigated. The technique was first benchmarked by exploring the binary lutetium oxide-silicon oxide material system, which successfully identified the luminescence phases of the system, Lu2SiO5 (LSO) and Lu2Si2O7 (LPS). The second application was to optimize the activator concentration in cerium doped LSO. The successfully optimized cerium concentration in the thin film LSO of 0.34 atomic percent was much greater than the standard cerium concentration in single crystal LSO. This lead to an intensive study based on temperature dependent steady-state and lifetime photoluminescence spectroscopy to understand the different concentration quenching mechanisms involved in the bulk single crystal versus the thin film LSO. The results were used to develop configuration coordinate models which were employed to explain the observed concentration dependent behavior. The nature of single crystal LSO:Ce concentration quenching was determined to be due to radiative energy transfer, and ultimately self-absorption. For the thin films it was found self-absorption was not a dominant factor due to the thin dimension of the film and also its nano-crystalline nature. Instead, the photoluminescence excitation and emission spectra as a function of concentration demonstrated the concentration quenching behavior was due to an increase in defect-mediated non-radiative transitions with increasing cerium. The final application of the thin film screening technique was the exploration of the ternary Lu2O3-SiO2-Al2O3 material system doped with cerium. It was found that the presence of aluminum and silicon hindered LSO and Al5Lu3O12 (LuAG) emission, respectively. However, the presence of aluminum was found to increase LPS emission intensity. The percent of aluminum in the LPS phase was estimated at 2.5 atomic percent.
64

Surface Coatings as Xenon Diffusion Barriers for Improved Detection of Clandestine Nuclear Explosions

Bläckberg, Lisa January 2014 (has links)
This thesis investigates surface coatings as xenon diffusion barriers on plastic scintillators. The motivation for the work is improved radioxenon detection systems, used within the verification regime of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). One type of radioxenon detection systems used in this context is the Swedish SAUNA system. This system uses a cylindrical plastic scintillator cell to measure the beta decay from radioxenon isotopes. The detector cell also acts as a container for the xenon sample during the measurement. One problem with this setup is that part of the xenon sample diffuses into the plastic scintillator material during the measurement, resulting in residual activity left in the detector during subsequent measurements. This residual activity is here referred to as the memory effect. It is here proposed, and demonstrated, that it is possible to coat the plastic scintillator material with a transparent oxide coating, working as a xenon diffusion barrier. It is found that a 425 nm Al2O3 coating, deposited with Atomic Layer Deposition, reduces the memory effect by a factor of 1000, compared an uncoated detector. Furthermore, simulations show that the coating might also improve the light collection in the detector. Finally, the energy resolution of a coated detector is studied, and no degradation is observed. The focus of the thesis is measurements of the diffusion barrier properties of Al2O3 films of different thicknesses deposited on plastic scintillators, as well as an evaluation of the expected effect of a coating on the energy resolution of the detector. The latter is studied through light transport simulations. As a final step, a complete coated plastic scintillator cell is evaluated in terms of memory effect, efficiency and energy resolution. In addition, the xenon diffusion process in the plastic material is studied, and molecular dynamics simulations of the Xe-Al2O3 system are performed in order to investigate the reason for the need for a rather thick coating to significantly reduce the memory effect.
65

SINGLE EVENT UPSET DETECTION IN FIELD PROGRAMMABLE GATE ARRAYS

Ambat, Shadab Gopinath 01 January 2008 (has links)
The high-radiation environment in space can lead to anomalies in normal satellite operation. A major cause of concern to spacecraft-designers is the single event upset (SEU). SEUs can result in deviations from expected component behavior and are capable of causing irreversible damage to hardware. In particular, Field Programmable Gate Arrays (FPGAs) are known to be highly susceptible to SEUs. Radiation-hardened versions of such devices are associated with an increase in power consumption and cost in addition to being technologically inferior when compared to contemporary commercial-off-the-shelf (COTS) parts. This thesis consequently aims at exploring the option of using COTS FPGAs in satellite payloads. A framework is developed, allowing the SEU susceptibility of such a device to be studied. SEU testing is carried out in a software-simulated fault environment using a set of Java classes called JBits. A radiation detector module, to measure the radiation backdrop of the device, is also envisioned as part of the final design implementation.
66

A MEASUREMENT OF THE PROMPT FISSION NEUTRON ENERGY SPECTRUM FOR <sup>235</sup>U(n,f) AND THE NEUTRON-INDUCED FISSION CROSS SECTION FOR <sup>238</sup>U(n,f)

Miller, Zachariah W. 01 January 2015 (has links)
Two measurements have been made, addressing gaps in knowledge for 235U(n,f) and 238U(n,f). The energy distribution for prompt fission neutrons is not well-understood below 1 MeV in 235U(n,f). To measure the 235U(n,f) prompt fission neutron distribution, a pulsed neutron beam at the WNR facility in Los Alamos National Laboratory was directed onto a 235U target with neutron detectors placed 1 m from the target. These neutron detectors were designed specifically for this experiment and employed a unique geometry of scintillating plastic material that was designed to reject backgrounds. Fission fragments were detected using an avalanche counter. Coincidences between fission fragment production and neutron detector events were analyzed, using a double time-of-flight technique to determine the energy of the prompt fission neutrons. A separate measurement was made, investigating the neutron-induced fission cross section for 238U(n,f). This measurement also used the pulsed neutron beam at the WNR facility. The neutron flux was normalized to the well-known hydrogen standard and the fission rate was observed for beam neutrons in the energy range of 130-300 MeV. Using an extrapolation technique, the energy dependence of the cross section was determined. These new data filled a sparsely populated energy region that was not well-studied and were measured relative to the hydrogen standard, unlike the majority of available data. These data can be used to constrain the fission cross section, which is considered a nuclear reaction standard.
67

Calibration Hardware Research and Development for SNO+

Walker, Matthew 02 June 2014 (has links)
The SNO+ experiment is a kilo-tonne scale liquid scintillator detector located at SNOLAB in Sudbury, Ontario, Canada. As the successor to the Sudbury Neutrino Observatory, SNO+ will use linear alkylbenzene (LAB) as the scintillator to study neutrinos. During the solar phase, ux measurements will be made of low energy neutrinos originating in the Sun. In another phase, 800 kg of tellurium will loaded into the scintillator to search for neutrinoless double beta decay. Measurements will also be made of neutrinos coming from nearby nuclear reactors and from inside Earth's mantle and crust. To enable these multiple physics goals, a sensitive calibration procedure must be carried out in order to fully understand the detector. The optical and energy responses of the detector will be measured with calibration sources deployed throughout the acrylic vessel. These sources must be connected to the observatory deck above the vessel by gas capillaries, optical bres, and signal wires housed in specially designed submersible umbilical cables. The design and fabrication of these umbilical cables is presented. Development work on a deployed radon calibration source will also be described. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2014-05-30 15:56:19.906
68

Dvouneutrinový dvojný beta rozpad 150Nd v experimentu NEMO-3 a charakterizace scintillátorů pro SUPER NEMO / Two- neutrino double beta decay of 150Nd in the NEMO-3 experiment and scintillator characterization for the SUPER NEMO

Žukauskas, Aivaras January 2017 (has links)
The half-life of two-neutrino double beta decay of 150 Nd has been measured with data taken by the NEMO-3 experiment at the Modane Underground Laboratory. Using 1918.5 days of data recorded with 36.55 g of 150 Nd the half-life of this process is measured to be T2ν 1/2 = (8.99 ± 0.18 (stat.) ± 0.71 (syst.)) × 1018 y. SuperNEMO is the successor to NEMO-3 and will be one of the next generation of 0νββ experiments. It aims to measure 82 Se with an half-life sensitivity of 1026 yr corresponding to ⟨mββ⟩ < 50 - 100 meV. In order to achieve this target, a testing apparatus for the scintillator characterization has been developed and 140 scintillator blocks were characterized for the calorimeter of the SuperNEMO. It was determined that none of the blocks violate defined criteria of uniformity (± 3% for the energy resolution at 1 MeV) nor the criteria of energy resolution (< 16% at 1 MeV). The average uniformity of the blocks was found to be 0.7% and the average energy resolution of these blocks is 12% at 1 MeV. However, it was discovered during the visual tests that 23 out of 140 blocks contain more than 20 visible dust specks, thus alarming the possible contamination of these blocks with the natural radioactive isotopes.
69

Détection de matière nucléaire par interrogation neutronique avec la technique de la particule associée / Nuclear material detection with fast neutrons using the associated particle technique

Deyglun, Clément 16 December 2014 (has links)
Cette thèse étudie la détection de matière nucléaire avec la technique de la particule associée pour l’inspection de bagages abandonnés ou de conteneurs maritimes dans le domaine de la sécurité. Le principe consiste à mesurer, avec des scintillateurs plastique, les coïncidences entre particules de fissions induites par des neutrons de 14 MeV produits par un générateur basé sur la réaction 2H(3H,n)4He et équipé d’un détecteur alpha à localisation pour déterminer le temps d’émission et la direction du neutron opposé. La détection d’au moins trois particules de fission en coïncidence avec la particule qui permet de discriminer les matières nucléaires des matériaux bénins. Le système d’acquisition et les outils de simulation ont été qualifiés en passif avec des sources radioactives puis en actif avec le générateur et diverses cibles, validant les estimations de performances de systèmesd’inspection de bagages abandonnés ou de conteneurs maritimes réalisées par simulation numérique avec le code MCNP-PoliMi. Il est ainsi possible de détecter en quelques minutes, quelques kg d’uranium au centre d’un container rempli d’une matrice fer mêmesi l’échantillon est masqué par du plomb, à l’aide du signal des neutrons prompts de fission. La détection est plus difficile dans les matrices organiques en raison de la diffusion des neutrons interrogateurs et de fission sur les noyaux d’hydrogène. Par ailleurs, l’utilisation de scintillateurs plastiques à la place des compteurs gazeux à 3He a été évaluée pour caractériser le plutonium dans les colis de déchets radioactifs par mesure passive des coïncidences. La détection des neutrons de fission est beaucoup plus rapide,ce qui permet de minimiser le bruit accidentel dû aux réactions (,n). Les scintillateurs sont cependant plus sensibles aux rayonnements gamma et à la diaphonie entre détecteurs voisins, ce qui nécessite d’exploiter les coïncidences de multiplicité 3 avec un traitement des données spécifique pour limiter la diaphonie. / This thesis investigates the detection of Special Nuclear Materials (SNM) by neutroninterrogation with the Associated Particle Technique (APT). 14 MeV neutrons areproduced from the 3H(2H,n)α fusion reaction in a sealed tube neutron generatorembedding a position-sensitive alpha detector. The alpha detector determines thedirection of the nearly opposite neutron and its time of flight. The detection of at leastthree prompt fission particles in coincidence with the tagged neutron signs the presenceof SNM. The acquisition system and simulation tools have been qualified in passive modewith radioactive sources and active mode with the generator and various targets,validating the simulation of inspection systems with MCNP-PoliMi. Calculations showthat the detection of a few kilograms of shielded SNM with the ATP is possible in ironcargo container, with the prompt fission neutrons signal. Detection is more difficult inorganic matrices due to tagged- and prompt fission neutrons scattering on hydrogennuclei. Furthermore, the use of plastic scintillators instead of 3He counters was studied tocharacterize the plutonium in the radioactive waste by passive coincidences measurement.Measurements at fast time scales of fast-neutrons instead of the long time scales ofthermal-neutrons reduce random coincidences that can occur with high (,n) reactionrate. The scintillators are however sensitive to gamma rays and cross-talk betweenadjacent detectors. Therefore, we used data-analysis algorithms to minimize cross-talkcontribution to measured three-fold coincidences.
70

Étude des effets mémoire dans les matériaux scintillateurs / Study of memory effects in scintillating materials

Patton, Gaël 17 September 2015 (has links)
L'intérêt des matériaux scintillateurs est la conversion de rayonnements de hautes énergies (particule γ, particules α, électrons,...) en photons de basse énergie détectables par les photo-détecteurs habituels. Ils sont utilisés dans de nombreuses applications : recherche en physique des hautes énergies, spectrométrie gamma pour la recherche ou la radio-protection, imagerie médicale ou technique, ainsi que pour la sécurité intérieure. Les propriétés de scintillation de ce type de matériau sont dépendantes de l'historique d'irradiation. Ce comportement, appelé effets mémoire, influe directement sur les performances des instruments utilisant ces matériaux. Trois effets mémoire différents peuvent être distingués : le vieillissement qui est une diminution du rendement de scintillation après une absorption de rayonnements ionisants, la rémanence qui est la persistance de l'émission lumineuse après la fin de l'excitation, et enfin la radio-sensibilisation qui est une augmentation, temporaire ou non, du rendement de scintillation en fonction de la dose absorbée par le scintillateur. Ce travail s'attache principalement à la compréhension du phénomène de radio-sensibilisation et à la rémanence dans les scintillateurs. Un matériau modèle, YP O4 : Ce, N d, a été utilisé afin de mettre en évidence la corrélation entre les pièges électroniques présents dans le matériau et les effets mémoire. Une fois ce lien mis en évidence, une étude sur un matériau commercial largement utilisé dans de nombreuses applications, l'iodure de césium dopé thallium, a été menéee. Sur la base de mesures de thermoluminescence, un modèle numérique a été développé afin de simuler les effets mémoire dans ces matériaux, puis de prédire leurs comportements en cas de modification des pièges électroniques. Par ailleurs, des méthodes de réduction des effets mémoire ont été étudiées via l'introduction de nouveaux pièges aux caractéristiques précises ou via la stimulation optique du matériau en parallèle de son irradiation / The interest of scintillating materials is the conversion of high energy radiations (γ or α particles, electrons, ...) in low energy photons detectable by usual photo-detectors. They are used in many applications : research in high energy physics, gamma spectrometry for research or radiation protection, medical and technical X-ray imaging, as well as for homeland security. The scintillation properties of this materials is dependent on the history of irradiation. This behavior, called memory effect, directly affects the performance of instruments using these materials. Three different memory effects can be distinguished : aging is a decrease in the scintillation yield after an absorption of ionizing radiation, the afterglow is the persistence of light emission after excitation, and finally radio-sensitization which is an increase of scintillation yield depending on the dose absorbed by the scintillator. This work mainly focus on the understanding of radio-sensitization phenomenon and afterglow in the scintillators. A model material, Y PO4 : Ce,Nd, was used to highlight the correlation between charges carrier traps present in the material and memory effects. Once this link is highlighted, a study of a commercial material widely used in many applications, thallium doped cesium iodide, was lead. Based on thermoluminescence measures, a numerical model was developed to simulate the memory effects in these materials and to predict their behavior in case of modification of charge carrier traps. Furthermore, several methods to reduce memory effects were investigated through the introduction of new traps with specific characteristics or through optical stimulation of the material in parallel to its irradiation. Finally, the role of radiosensitization in the scintillation efficiency under gamma excitation was highlighted on BaAl4O7 : Eu2+ ceramics. These results suggest a way to improve performance of some scintillating performance by the exaltation via prior irradiation

Page generated in 0.0822 seconds