• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Using a Groundwater Influenced Sea Level Rise Model to Assess the Costs Due to Sea-Level Rise on a Coastal Community’s Stormwater Infrastructure Using Limited Groundwater Data

Unknown Date (has links)
A confounding factor for sea level rise (SLR) is that it has a slow, steady creep, which provides a false sense for coastal communities. Stresses caused by SLR at today’s rate are more pronounced in southeastern Florida and as the rate of SLR accelerates, the exposure areas will increase to a point where nearly all the state’s coastal infrastructure will be challenged. The research was conducted to develop a method for measuring the impact of SLR on the City of West Palm Beach (City), assess its impact on the stormwater system, identify vulnerable areas in the City, provide an estimate of long-term costs of improvements, and provide a toolbox or strategies to employ at the appropriate time. The assessment was conducted by importing tidal, groundwater, topographic LiDAR and infrastructure improvements into geographic modeling software and performing analysis based on current data. The data revealed that over $400 million in current dollars might be needed to address stormwater issues arising from SLR before 2100. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection
2

On the Variability of Pacific Ocean Tides at Seasonal to Decadal Time Scales: Observed vs Modelled

Devlin, Adam Thomas 17 May 2016 (has links)
Ocean tides worldwide have exhibited secular changes in the past century, simultaneous with a global secular rise in mean sea level (MSL). The combination of these two factors contributes to higher water levels, and may increase threats to coastal regions and populations over the next century. Equally as important as these long-term changes are the short-term fluctuations in sea levels and tidal properties. These fluctuations may interact to yield locally extreme water level events, especially when combined with storm surge. This study, presented in three parts, examines the relationships between tidal anomalies and MSL anomalies on yearly and monthly timescales, with a goal of diagnosing dynamical factors that may influence the long-term evolution of tides in the Pacific Ocean. Correlations between yearly averaged properties are denoted tidal anomaly trends (TATs), and will be used to explore interannual behavior. Correlations of monthly averaged properties are denoted seasonal tidal anomaly trends (STATs), and are used to examine seasonal behavior. Four tidal constituents are analyzed: the two largest semidiurnal (twice daily) constituents, M2 and S2, and the two largest diurnal (once daily) constituents, K1 and O1. Part I surveys TATs and STATs at 153 Pacific Ocean tide gauges, and discusses regional patterns within the entire Pacific Ocean. TATs with statistically significant relations between MSL and amplitudes (A-TATs) are seen at 89% of all gauges; 92 gauges for M2, 66 for S2, 82 for K1, and 59 for O1. TATs with statistically significant relations between tidal phase (the relative timing of high water of the tide) and MSL (P-TATs) are observed at 55 gauges for M2, 47 for S2, 42 for K1, and 61 for O1. Significant seasonal variations (STATs) are observed at about a third of all gauges, with the largest concentration in Southeast Asia. The effect of combined A-TATs was also considered. At selected stations, observed tidal sensitivity with MSL was extrapolated forward in time to the predicted sea level in 2100. Results suggest that stations with large positive combined A-TATs produce total water levels that are greater than those predicted by an increase in MSL alone, increasing the chances of high-water events. Conversely, negative correlation between sea level and tidal properties may mitigate somewhat against sea level rise; changes in total water levels in 2100 at stations with a negative combined A-TAT are less than that predicted by MSL rise alone. Climate change scenarios that take into account greater increases in MSL due to increased Antarctic ice melt show larger changes in total water levels over the same time period. Part II examines the mechanisms behind the yearly (TAT) variability in the Western Tropical Pacific Ocean. Significant amplitude TATs are found at more than half of 26 gauges for each of the two strongest tidal constituents, K1 (diurnal) and M2 (semidiurnal). For the lesser constituents analyzed (O1 and S2), significant trends are observed at ten gauges. Frictional mechanisms related to the El Nino Southern Oscillation (ENSO) are found to be important in influencing tides in the Western Pacific, as well as resonant triad interactions, a nonlinear coupling that exchanges energy between the M2, K1, and O1 tides. Both of these factors contribute to the observed tidal variability in the Solomon Sea region. Part III analyzes the seasonal behavior of tides (STATs) at twenty tide gauges in the Southeast Asian waters, which exhibit variation by 10-30% of mean tidal amplitudes. A barotropic ocean tide model that considers the seasonal effects of MSL, stratification, and geostrophic and Ekman velocity is used to explain the observed seasonal variability in tides due to variations in monsoon-influenced climate forcing, with successful results at about half of all gauges. The observed changes in tides are best explained by the influence of non-tidal velocities (geostrophic and Ekman), though the effect of changing stratification is also an important secondary causative mechanism. From the results of these surveys and investigations, it is concluded that short-term fluctuations in MSL and tidal properties at multiple time scales may be as important in determining the state of future water levels as the long-term trends. Global explanations for the observed tidal behavior have not been found in this study; however, significant regional explanations are found at the yearly time scale in the Solomon Sea, and at the seasonal time scale in Southeast Asia. It is likely that tidal sensitivity to annual and seasonal variations in MSL at other locations also are driven by locally specific processes, rather than factors with basin-wide coherence.
3

Evaluating Sea-Level Rise Hazards on Coastal Archaeological Sites, Trinity Bay, Texas

Elliott, Patrick 05 1900 (has links)
This study uses the predictive modeling program Sea-Levels Affecting Marshes Model (SLAMM) to evaluate sea-level rise hazards, such as erosion and inundation, on coastal archaeological sites with a vertical rise of sea level of .98 meters from 2006 to 2100. In total 177 archaeological site locations were collected and georeferenced over GIS outputs maps of wetlands, erosion presence, surface elevation, and accretion. Wetlands data can provide useful information about characteristics of the wetland classes, which make a difference in the ability for coastal archaeological sites to combat sea level rise. Additionally, the study evaluated predicted erosion of archaeological sites by presence or absence of active erosion on a cell-by-cell basis. Elevation map outputs relative to mean tide level allowed for a calculation of individual archaeological site datums to use NOAA tidal databases to identify the potential for their inundation. Accretion maps acquired from the SLAMM run determined the potential for the archaeological site locations to combat rising sea levels and potentially provide protection from wave effects. Results show that the most significant hazard predicted to affect coastal archaeological sites is inundation. Approximately 54% of the total archaeological sites are predicted to be inundated at least half the time by 2100. The hazard of erosion, meanwhile, is expected to affect 33% of all archaeological sites by the end of the century. Although difficult to predict, the study assumes that accretion will not be able to keep pace with sea-level rise. Such findings of hazards prove that SLAMM is a useful tool for predicting potential effects of sea-level rise on coastal archaeological sites. With its ability to customize and as it is complementary, it provides itself not only an economical choice but also one that is adaptable to many scenarios.

Page generated in 0.0726 seconds