• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Early steps in cotranslational translocation of proteins across the ER membrane

Neuhof, Andrea 10 July 2000 (has links)
Sekretorische Proteine und Proteine der Kompartimente des sekretorischen Transportweges müssen die Membran des Endoplasmatischen Retikulums überqueren, um an ihren Wirkungsort zu gelangen. In der vorliegenden Arbeit wurden frühe Schritte des kotranslationalen Transports von Proteinen durch die ER-Membran untersucht. Signalsequenzen leiten diese Proteine als ribosomengebundene Intermediate an die ER-Membran. Die Ribosomen binden dort an den Sec61p-Komplex, der als Ribosomenrezeptor wirkt und gleichzeitig den proteinleitenden Kanal in der Membran bildet. Die Assoziation von Ribosomen mit dem Sec61p-Komplex verläuft in zwei Phasen. Die initiale Bindung ist sensitiv gegenüber hohen Salzkonzentrationen. Die Ribosomenbindung wird salzresistent, wenn die naszierende Kette in den Kanal inseriert und der Sec61p-Komplex die Signalsequenz erkennt. Sowohl Ribosomen ohne naszierende Kette als auch Ribosomen, die Proteine ohne Signalsequenzen synthetisieren, sind nur zur initialen salz-sensitiven Bindung an den Sec61p-Komplex fähig. Signalsequenzen interagieren im Cytosol mit SRP (engl.: Signal Recognition Particle). In dieser Arbeit wurde gezeigt, daß Signalsequenzen außerdem von Calmodulin gebunden werden. SRP und Calmodulin scheinen für die Interaktion mit Signalsequenzen einen ähnlichen Mechanismus zu benutzen, der wiederum mit der Signalsequenzerkennung durch den Sec61p-Komplex verwandt ist. Alle Ribosomen, unabhängig davon ob und welches Protein sie translatieren, können mit dem Sec61p-Komplex interagieren und daher um Bindungsplätze an der ER-Membran kompetitieren. Wenn SRP an die Signalsequenz einer naszierenden Kette gebunden ist, erhalten diese Ribosomen jedoch einen Vorteil in der Kompetition. Nur sie können Ribosomen ohne naszierende Kette oder Ribosomen, die ein cytosolisches Protein translatieren, vom Sec61p-Komplex verdrängen und sich selbst dann einen Translokationsort sichern, wenn alle Bindingsplätze an der Membran besetzt sind. In der vorliegenden Arbeit wurden dreidimensionale Strukturen von Komplexen aus Ribosom und proteinleitendem Translokationskanal vorgestellt, die der ersten und zweiten Phase der Ribosomenbindung entsprechen. Überraschenderweise unterscheiden sich diese beiden Stadien strukturell nicht. In beiden Fällen existieren definierte Verbindungen zwischen Ribosom und Kanal, die eine Lücke von etwa 20 Angström zwischen dem Ribosom und der Membranoberfläche überbrücken. Die Lücke stellt eine Verbindung zum Cytosol her, die eventuell dazu dient, naszierende Ketten ins Cytosol zu entlassen, wenn diese nicht ins Lumen des ER transportiert werden sollen. Weiterhin zeigen wir, daß der Kanal in nativen Membranen größer ist als der Kanal, der nur aus gereinigtem Sec61p-Komplex besteht. Dieser größere Kanal besitzt eine zusätzliche lumenale Domäne, die von der Oligosaccharyltransferase oder vom TRAP-Komplex gebildet wird. / The first step in the secretory pathway is the translocation of proteins across the membrane of the endoplasmic reticulum (ER). In this thesis project, early stages of cotranslational protein translocation in mammalian cells were studied. Proteins following the secretory pathway are targeted to the ER as ribosome-nascent chain complexes by their N-terminal hydrophobic signal sequences. The nascent chain is translocated across the ER membrane through a hydrophilic channel formed by the Sec61p complex, which also functions as the ribosome receptor. The initial binding of ribosomes to the ER membrane is salt-sensitive. After insertion of the nascent chain into the translocation channel and signal sequence recognition by the Sec61p complex, the ribosome is bound in a salt-resistant manner. The membrane binding of ribosomes lacking nascent chains and of ribosomes carrying nascent chains without signal sequences is always salt-sensitive. It is known that in the cytosol, the signal sequence binds to the signal recognition particle (SRP). Here we show that another cytosolic factor, the small regulatory protein calmodulin, can interact with signal sequences. Our data suggest that both SRP and calmodulin use a similar mechanism for substrate binding and recognition. In fact, this mechanism may be related to signal sequence recognition by the Sec61p complex. Previously the question has been raised of how efficient targeting of ribosome-nascent chain complexes (RNCs) carrying a signal sequence is possible when all ribosomes, regardless of the presence or nature of a nascent chain, can bind to the Sec61p complex. We demonstrate that all ribosomes compete for common binding sites at the ER membrane and that SRP functions as a positive effector to give RNCs carrying a signal sequence an advantage over other ribosomes. RNCs with a signal sequence and bound SRP can displace ribosomes without a nascent chain and ribosomes synthesizing cytosolic proteins from the membrane and can therefore secure a translocation site even when all ribosome binding sites at the ER membrane are occupied. A structural analysis by single particle cryo electron microscopy revealed that ribosome-translocation channel complexes do not differ in the salt-sensitive or the salt-resistant stage of ribosome binding to the ER membrane. Furthermore our data show that the ribosome is linked to the translocation channel by a discrete number of connections. Even in the presence of a translocating nascent chain the ribosome-membrane junction is not completely sealed towards the cytosol. Instead, a sizable gap exists between the ribosome and the surface of the membrane that may allow nascent polypeptide chains to enter the cytosol when their translocation across the ER membrane is prevented. We also show that translocation channels derived from native microsomes are larger than channels derived from purified Sec61p complex. These larger channels contain a wider central pore and an additional lumenal domain, which is formed by the oligosaccharyl transferase or by the TRAP complex.
2

Zum Mechanismus der Translokation von Proteinen in das Endoplasmatische Retikulum der Hefe

Plath, Kathrin 23 July 1999 (has links)
In der Hefe Saccharomyces cerevisiae können Proteine entweder co- oder posttranslational durch die Membran des Endoplasmatischen Retikulum transportiert werden. Sie besitzen eine Signalsequenz, die sie zu einem hydrophilen Kanal in der Membran bringt, durch den der Transport erfolgt. Die zentrale Komponente des Translokationsapparates in der Membran ist der aus den Untereinheiten Sec61p, Sbh1p und Sss1p bestehende Sec61p-Komplex. Beim Proteintransport wirkt der Sec61p-Komplex zusammen mit anderen Faktoren: Im cotranslationalen Transport geht er eine feste Bindung mit Ribosomen ein; der posttranslationale Transport erfordert die Assoziation mit dem tetrameren Sec62/63p-Komplex unter Bildung des sogenannten Sec-Komplexes. In der vorliegenden Arbeit wurde die Struktur des Sec61p-Komplexes durch Elektronenmikroskopie analysiert. Er liegt in Detergenzlösung in ringförmigen Strukturen mit einem Durchmesser von ~82Å und einer zentralen Pore von ~21Å vor. Jeder Ring besteht aus drei oder vier heterotrimeren Sec61p-Komplexen. Die oligomeren Ringstrukturen des Sec61p-Komplexes entsprechen vermutlich proteinleitenden Kanälen der Membran des Endoplasmatischen Retikulum. In Membranen wird ihre Bildung durch die Bindung von Ribosomen oder die Interaktion mit dem Sec62/63p-Komplex induziert. Eine dreidimensionale Struktur, die durch Kryo-Elektronenmikroskopie erhalten wurde, zeigt, daß das Ribosom so an den Sec61p-Komplex bindet, daß der Tunnel im Ribosom, durch den die naszierende Polypeptidkette das Ribosom verläßt, genau in die zentrale Pore des Sec61p-Oligomers mündet. Es existiert also ein kontinuierlicher Kanal, der sich vom Peptidyltransferase-Zentrum im Ribosom durch die zentrale Pore des Sec61p-Oligomers erstreckt, durch den naszierende Polypeptidketten cotranslational direkt in das Lumen des Endoplasmatischen Retikulum transportiert werden könnten. In dieser Arbeit wurde ein dem Sec61p-Komplex verwandter heterotrimerer Komplex in der Membran des Endoplasmatischen Retikulum identifiziert, der aus den Untereinheiten Ssh1p, Sbh2p und Sss1p besteht. Sss1p ist beiden trimeren Komplexen gemein; Ssh1p und Sbh2p sind homolog zu Sec61p bzw. Sbh1p. Durch Deletion von Ssh1p und Sbh2p wurde gezeigt, daß der Ssh1p-Komplex wie der Sec61p-Komplex am Transport von Proteinen in das Endoplasmatische Retikulum beteiligt ist. Der Ssh1p-Komplex ist mit membrangebundenen Ribosomen assoziiert und bildet in Detergenzlösung oligomere Ringstrukturen, aber interagiert nicht mit dem Sec62/63p-Komplex. Wir postulieren daher, daß der Ssh1p-Komplex ausschließlich den cotranslationalen Transport von Proteinen vermittelt. Beim posttranslationalen Transport interagiert das vollständig synthetisierte Modellsubstrat Prepro-Alphafaktor mit vielen cytosolischen Proteinen. Die cytosolischen Chaperone Hsp70 und TRiC konnten als Interaktionspartner identifiziert werden. Bei der Bindung des Prepro-Alphafaktors an die Membran werden die cytosolischen Proteine freigesetzt. Wir verwendeten einen Photoquervernetzungsansatz, um zu untersuchen, wie die Signalsequenz des Prepro-Alphafaktors im Bindungsschritt durch den Sec-Komplex erkannt wird. Die Signalsequenz-bindungsstelle wird hauptsächlich von Sec61p gebildet und befindet sich an der Grenzfläche zur Lipiddoppelschicht. Die gebundene Signalsequenz ist in einer helikalen Struktur fixiert und wird auf gegenüberliegenden Seiten von den Transmembrandomänen 2 und 7 des Sec61p umgeben. Sec62p und Sec71p, zwei Untereinheiten des Sec62/63p-Komplexes, flankieren gemeinsam eine Seite der Signalsequenzhelix, befinden sich aber in größerer Entfernung zur Signalsequenz als Sec61p. Es wird ein Modell vorgeschlagen, das beschreibt, wie die Bindung der Signalsequenz den Translokationskanal für den Transport öffnen könnte. / Protein transport across the membrane of the endoplasmic reticulum occurs either co- or posttranslationally in the yeast Saccharomyces cerevisiae. In both cases, polypeptides are directed to a translocation apparatus in the membrane by virtue of their signal sequences and then transported across the lipid bilayer through a protein-conducting channel. The major component of the protein translocation apparatus in the membrane is the heterotrimeric Sec61p complex consisting of the subunits Sec61p, Sbh1p and Sss1p. During translocation the Sec61p complex associates with other factors: In the cotranslational mode it interacts with ribosomes, whereas in the posttranslational mode it associates with the tetrameric Sec63/62p complex to form the so-called Sec complex. Here, we have analyzed the structure of the Sec61p complex by electron microscopy. In detergent this complex forms ring-like structures with a diameter of about 82Å and a central pore of about 21Å. Each ring contains 3 or 4 heterotrimeric Sec61p complexes. In membranes the formation of ring structures of the Sec61p complex is induced by its association with ribosomes or the Sec62/63p complex. We propose that the ring-like Sec61p oligomers represent protein-conducting channels of the endoplasmic reticulum membrane. A 3-dimensional structure of the ribosome-Sec61p complex obtained by electron-cryo-microscopy and single particle reconstruction showed, that the central pore of the Sec61p oligomer aligns precisely with the exit of a tunnel traversing the large ribosomal subunit that forms the passageway for the nascent chain. Thus, in cotranslational translocation a continuous channel extending from the ribosome through the Sec61p oligomer could guide the nascent chain directly into the lumen of the endoplasmic reticulum. Furthermore, we have discovered a trimeric protein complex in the yeast endoplasmic reticulum membrane that is structurally related to the Sec61p complex. This so-called Ssh1p complex consists of Ssh1p, a distant relative of Sec61p, of Sbh2p, a homolog of the Sbh1p subunit of the Sec61p complex, and of Sss1p, a component common to both trimeric complexes. In contrast to Sec61p, Ssh1p is not essential for cell viability, but it is required for normal growth rates. Sbh1p and Sbh2p individually are also not essential for cell viability, but cells lacking both proteins are impaired in their growth at elevated temperature and accumulate precursors of secretory proteins in the cytosol. Like the Sec61p complex, the Ssh1p complex forms ring-like structures in detergent and interacts with membrane-bound ribosomes, but it does not associate with the Sec62/63p complex. We therefore postulate that the Ssh1p complex functions exclusively in the cotranslational pathway of protein translocation. In the posttranslational transport process the newly synthesized translocation substrate prepro-a-factor associates with a large number of cytosolic proteins including the chaperones Hsp70 and TRiC. Upon binding of prepro-a-factor to the Sec complex all cytosolic proteins are released. Using a photo-crosslinking approach and a unique mapping technique we have investigated, how the signal sequence of prepro-a-factor is recognized by the Sec complex during the binding step. The signal sequence contacts primarily the multispanning membrane protein Sec61p. The bound signal sequence adopts a helical structure that interacts on opposite sides with transmembrane domains 2 and 7 of Sec61p, respectively. Sec62p and Sec71p, two subunits of the Sec62/63p complex, contact one side of the signal sequence, but are further away than Sec61p. Our data show, that the signal sequence binding site is located at the interface of the protein channel and the lipid bilayer. We suggest that binding of the signal sequence could open the channel for polypeptide transport.

Page generated in 0.0528 seconds