• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 110
  • 29
  • 25
  • 15
  • 12
  • 7
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 252
  • 252
  • 230
  • 101
  • 99
  • 62
  • 39
  • 34
  • 31
  • 29
  • 27
  • 25
  • 23
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The Design and Construction of a Second Harmonic Generation Microscope For Collagen Imaging

Au, Ivy Win Long January 2013 (has links)
In recent years, second harmonic generation (SHG) microscopy has revolutionised the field of biological imaging by offering a new means of visualising the fine structures of collagen tissues with excellent image penetration while minimising photodamage. This project involves the design and construction of a SHG microscope that is built around a compact femtosecond fibre laser for collagen imaging. Operating at 1032 nm, the microscope has demonstrated a penetration depth of beyond 320 microns in collagen, which is considerably superior to depths of 250 to 300 microns achievable with a conventional SHG microscope coupled to a Ti:sapphire excitation laser. The imaging characteristics of the microscope have been tested with a modified sample of bovine pericardium. The results indicate the microscope is polarisation-sensitive to the tissue structure and is capable to detecting signal changes at 10 μm resolution. This thesis will describe in detail, to our best knowledge, the first SHG microscope equipped with a compact and robust all-fibre femtosecond 1032 nm laser source.
22

The second harmonic generation in reflection mode - an analytical, numerical and experimental study

Romer, Anne 12 January 2015 (has links)
Implementation of the ultrasonic second harmonic generation has typically been restricted to simple setups such as through-transmission or Rayleigh surface waves. Recent research has evaluated the second harmonic generation in P- and SV- waves reflected from a stress-free surface to enable the single-sided interrogation of a specimen. This research considers the second harmonic generation in an aluminum specimen, which is analytically evaluated using an approach based on the perturbation method. Here, the model is chosen to mimic an experimental setup where a longitudinal wave is generated at an oblique angle and the reflected wave is detected using a set of wedge transducers. Due to mode conversion at the interface of the wedge and the specimen, it is necessary to evaluate longitudinal and shear waves, determining all second harmonic waves generated in the bulk and at the stressfree boundary. The theoretically developed model is then implemented in a commercial finite element code, COMSOL, using increasing fundamental wave amplitudes for different values of third order elastic constants. The results of this computational model verify the analytical approach and the proposed measurement setup, taking into account assumptions and approximations of the solution procedure. Furthermore, the computational model is used to draw important conclusions relevant to the experimental setup, including the need to avoid evolving surface waves and interactions with diffracted waves. These numerical results are used to develop a recommendation for the measurement position and incident angle. Finally, the nonlinearity of two different aluminum specimens is measured with the suggested measurement setup and the results confirm the feasibility of the single-sided determination of the acoustic nonlinearity using reflected bulk waves.
23

Second harmonic spectroscopy of silicon nanocrystals

Figliozzi, Peter Christopher, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
24

Second-harmonic generation and reflectance-anisotropy spectroscopy of vicinal Si(001)

Kwon, Jinhee, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
25

Second Harmonic Generation from InGaAsP Waveguide at 1.3 gm Wavelength

Bierman, Robert Michael 10 1900 (has links)
Results of research on surface emission from a waveguide due to second-harmonic generation are presented. This concept has been applied and demonstrated here in the InP-InGaAsP material system for the first time, using a fundamental wavelength of 1.32 |im and a harmonic surface emission at 660 nm. The surface emission is the result of the nonlinear mixing of two counterpropagating modes in a waveguide. The theory of nonlinear optics that produces this effect is explained, leading up to a model that describes the behaviour of the surface emitting waveguide (SEWG). This model is then used to design a pseudo-optimized structure that was subsequently grown, characterized and tested. Device performance and behaviour are compared with theoretical predictions. / Thesis / Master of Engineering (ME)
26

Properties and applications of two dimensional optical spatial solitons in a quadratic nonlinear medium

Fuerst, Russell Alexander 01 January 1999 (has links)
No description available.
27

Second order cascading effect in LiNbO3 waveguide devices and applications

Fang, Hui 01 July 2000 (has links)
No description available.
28

Study of applications of second harmonic generation

Prem, Adrienne Marie 08 July 2011 (has links)
Two applications of second harmonic generation (SHG), a nonlinear optical technique, are studied. First, Fresnel factors are used with a bond model to describe SHG from vicinal silicon at five incidence angles: 7.5°, 22°, 30°, 45°, and 52°. Second, a prototype apparatus for applying SHG to enhance imaging capabilities of optical coherence tomography, a microscopy technique used in many biological fields, is briefly described. / text
29

Barium Titanate Nanoparticles as Exogenous Contrast Agents in Second Harmonic Optical Coherence Tomography

Pearson, Jeremy T 03 October 2013 (has links)
I propose and demonstrate a method by which barium titanate nanoparticle clusters can be used as exogenous contrast agents in Second Harmonic Optical Coherence Tomography imaging systems to localize and highlight desired regions of tissue. SH-OCT has previously been used to identify collagen within OCT images. However, SH-OCT signals from collagen are highly susceptible to inferior reflector artifacts because most of the second harmonic generated light is forward scattered. Second harmonic generating nanoparticle clusters exhibit high scattering properties, which can give them the advantage of backscattering a large quantity of second harmonic light while attenuating the forward scattered light. In this research project, a mathematical model is proposed in which the backward to forward scattering ratio of second harmonic generated light from nanoparticle layers is exponentially proportional to the thickness of the layer. This model was supported by measurements of the backward to forward scattering ratio of second harmonic light in barium titanate nanoparticles layers. This indicates that nanoparticle clusters can be designed and manufactured with the proper thickness so that they generate a large second harmonic signal without creating inferior reflector artifacts.
30

Syntheses, photophysics and photochemistry of surfactant rhennium (I) complexes, potential applications as functional materials for second-harmonic generation, photoswitching and liquid crystals

Yang, Yu, 楊宇 January 2000 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy

Page generated in 0.0579 seconds