• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Second Harmonic Generation from InGaAsP Waveguide at 1.3 gm Wavelength

Bierman, Robert Michael 10 1900 (has links)
Results of research on surface emission from a waveguide due to second-harmonic generation are presented. This concept has been applied and demonstrated here in the InP-InGaAsP material system for the first time, using a fundamental wavelength of 1.32 |im and a harmonic surface emission at 660 nm. The surface emission is the result of the nonlinear mixing of two counterpropagating modes in a waveguide. The theory of nonlinear optics that produces this effect is explained, leading up to a model that describes the behaviour of the surface emitting waveguide (SEWG). This model is then used to design a pseudo-optimized structure that was subsequently grown, characterized and tested. Device performance and behaviour are compared with theoretical predictions. / Thesis / Master of Engineering (ME)
2

Moisture content profiles and surface phenomena during drying of wood

Rosenkilde, Anders January 2002 (has links)
<p>Timber drying is one of the most important processes whenmanufacturing sawn timber products. The drying processinfluences deformations, surface checking, discoloration andhence, the product quality and the manufacturing costs.Research in this field is of great importance for the woodindustry since the industrial drying process always needs to beimproved as market demands increases and new wood products aredeveloped.</p><p>The aim of the present thesis was to investigate themoisture transport behaviour in wood based on measurementsduring drying from fresh condition down to end use moisturecontent. The behaviour near the surface interface has beenspecifically investigated since it is of great importance forthe theoretical description of the drying process. Furthermore,studies based on measurements in the wood surface layer duringdrying are not easy to find in the literature. The reason forthat is probably that it is very difficult to make accuratemoisture measurements with high spatial or temporal resolutionwithout disturbing the drying process.</p><p>Measurements of moisture content profiles in Scots pineheartwood and sapwood during drying have been performed byusing three different methods. The first was a destructivemethod where the wood samples are sliced with a knife intoseveral smaller pieces. The moisture content in each piece wasdetermined with the dry weight method. The second method usedis non-destructive and it utilises a medical CT-scanner thathas been adapted for drying experiments. The samples are driedin-situ the scanner through the whole experiment. TheCT-scanner measures density and the moisture content arecalculated according to existing methods developed by otherscientists. The third method was also non-destructive and itutilises a Magnetic Resonance Imaging, MRI, technique. Withthis technique the amount of water in the wood sample ismeasured directly even though it has to be calibrated tomoisture content.</p><p>The surface emission factor, S, or surface resistance, 1/S,has been studied by performing sorption experiments with MDF ina narrow moisture content range. The experiment was evaluatedusing a simple diffusion model that includes a surface emissionfactor S. The experimental result was compared with resultscalculated using well established boundary layer theories.</p><p>Measurements of moisture content profiles in the wood bulkshowed an expected Fickian behaviour at moisture contents belowthe fibre saturation point. Above the fibre saturation pointalmost flat moisture profiles were observed. This behaviour wasnot expected and it is not possible to simulate this behaviourwith the existing drying models since they usually assume thatthere is a gradient in the moisture profile over the wholemoisture content range. From the moisture profiles thediffusion coefficients were determined over a moisture contentranging from 8 to 30%. The values for heartwood and sapwood areapproximately equal in radial and tangential direction tograin. Furthermore, the diffusion values in longitudinaldirection are much higher as expected.</p><p>The sorption experiments with MDF gave a greater surfaceresistance compared with the calculation that was based onboundary layer theory. The ratio was three or higher. Thisimplied that there was a greater resistance in the surfacelayer. In addition, this was not well described in theliterature even though a few recent published studiesexist.</p><p>High resolution measurements in the surface layer of woodshowed behaviour similar to that observed in the bulk wood. Theresults showed the very early development of a dry zone closeto the surface interface. In that zone or shell the moisturecontent was below the FSP even though the bulk moisture contentwas far above the FSP. At the end of the experiments themoisture content in the surface layer (0–300 µm)nearly reached the equilibrium moisture content even though thebulk moisture content still was much higher.</p><p><b>Keywords:</b>Computer tomography, Diffusion, Magneticresonance, Moisture measurements, Moisture profiles, Surfaceemission, Wood drying</p>
3

Moisture content profiles and surface phenomena during drying of wood

Rosenkilde, Anders January 2002 (has links)
Timber drying is one of the most important processes whenmanufacturing sawn timber products. The drying processinfluences deformations, surface checking, discoloration andhence, the product quality and the manufacturing costs.Research in this field is of great importance for the woodindustry since the industrial drying process always needs to beimproved as market demands increases and new wood products aredeveloped. The aim of the present thesis was to investigate themoisture transport behaviour in wood based on measurementsduring drying from fresh condition down to end use moisturecontent. The behaviour near the surface interface has beenspecifically investigated since it is of great importance forthe theoretical description of the drying process. Furthermore,studies based on measurements in the wood surface layer duringdrying are not easy to find in the literature. The reason forthat is probably that it is very difficult to make accuratemoisture measurements with high spatial or temporal resolutionwithout disturbing the drying process. Measurements of moisture content profiles in Scots pineheartwood and sapwood during drying have been performed byusing three different methods. The first was a destructivemethod where the wood samples are sliced with a knife intoseveral smaller pieces. The moisture content in each piece wasdetermined with the dry weight method. The second method usedis non-destructive and it utilises a medical CT-scanner thathas been adapted for drying experiments. The samples are driedin-situ the scanner through the whole experiment. TheCT-scanner measures density and the moisture content arecalculated according to existing methods developed by otherscientists. The third method was also non-destructive and itutilises a Magnetic Resonance Imaging, MRI, technique. Withthis technique the amount of water in the wood sample ismeasured directly even though it has to be calibrated tomoisture content. The surface emission factor, S, or surface resistance, 1/S,has been studied by performing sorption experiments with MDF ina narrow moisture content range. The experiment was evaluatedusing a simple diffusion model that includes a surface emissionfactor S. The experimental result was compared with resultscalculated using well established boundary layer theories. Measurements of moisture content profiles in the wood bulkshowed an expected Fickian behaviour at moisture contents belowthe fibre saturation point. Above the fibre saturation pointalmost flat moisture profiles were observed. This behaviour wasnot expected and it is not possible to simulate this behaviourwith the existing drying models since they usually assume thatthere is a gradient in the moisture profile over the wholemoisture content range. From the moisture profiles thediffusion coefficients were determined over a moisture contentranging from 8 to 30%. The values for heartwood and sapwood areapproximately equal in radial and tangential direction tograin. Furthermore, the diffusion values in longitudinaldirection are much higher as expected. The sorption experiments with MDF gave a greater surfaceresistance compared with the calculation that was based onboundary layer theory. The ratio was three or higher. Thisimplied that there was a greater resistance in the surfacelayer. In addition, this was not well described in theliterature even though a few recent published studiesexist. High resolution measurements in the surface layer of woodshowed behaviour similar to that observed in the bulk wood. Theresults showed the very early development of a dry zone closeto the surface interface. In that zone or shell the moisturecontent was below the FSP even though the bulk moisture contentwas far above the FSP. At the end of the experiments themoisture content in the surface layer (0–300 µm)nearly reached the equilibrium moisture content even though thebulk moisture content still was much higher. Keywords:Computer tomography, Diffusion, Magneticresonance, Moisture measurements, Moisture profiles, Surfaceemission, Wood drying / <p>NR 20140805</p>
4

Energieeintrag langsamer hochgeladener Ionen in Festkörperoberflächen

Kost, Daniel 26 April 2007 (has links)
Motiviert durch die in der Literatur bisher unvollständige Beschreibung der Relaxation hochgeladener Ionen vor Festkörperoberflächen, besonders in Bezug auf den Eintrag potenzieller Energie in Oberflächen und der Aufstellung einer vollständigen Energiebilanz, werden in dieser Arbeit komplementäre Studien präsentiert, die sowohl die Ermittlung des Anteils der deponierten potenziellen Energie als auch die Ermittlung der emittierten potenziellen Energie ermöglichen. Zum Einen wird zur Bestimmung des eingetragenen Anteils der potenziellen Energie eine kalorimetrische Messanordnung verwendet, zum Anderen gelingt die Bestimmung der emittierten potenziellen Energie mittels doppeldifferenzieller Elektronenspektroskopie. Für vertiefende Studien werden Materialien unterschiedlicher elektronischer Strukturen (Cu, n-Si, p-Si und SiO2 ) verwendet. Im Falle der Kalorimetrie wird festgestellt, dass die eingetragene potenzielle Energie linear mit der inneren potenziellen Energie der Ionen wächst. Dabei bleibt das Verhältnis zwischen der eingetragenen potenziellen Energie und der inneren potenziellen Energie nahezu konstant bei etwa (80 ± 10) %. Der Vergleich von Cu, n-Si und p-Si zeigt im Rahmen der Messfehler keine signifikanten Unterschiede in diesem Verhältnis. Es liegen jedoch deutlich unter jenem von SiO2. Die Elektronenspektroskopie liefert ein dazu komplementäres Ergebnis. Für Cu und Si konnte ebenfalls eine lineare Abhängigkeit zwischen emittierter Energie und innerer potenzieller Energie festgestellt werden. Das Verhältnis wurde hierfür bis zum Ladungszustand bis Ar7+ zu etwa (10 ± 5) % unabhängig vom Ladungszustand bestimmt. Im Gegensatz dazu liefert SiO2 eine nahezu verschwindende Elektronenausbeute. Für Ar8+ und Ar9+ steigt die Elektronenausbeute wegen der Beiträge der LMM-Augerelektronen für alle untersuchten Materialien leicht an. Der Anteil der emittierten Energie eines Ar9+ -Ions wird für Cu und Si zu etwa 20 % und für SiO2 zu etwa 10 % angegeben. Diese Ergebnisse sind in guter Übereinstimmung mit den Kalorimetrieexperimenten und erfüllen die Energiebilanz. Zusätzlich werden die experimentellen Ergebnisse mit einer Computersimulation modelliert, welche auf dem erweiterten dynamischen klassischen Barrierenmodell basiert. Aus diesen Rechnungen kann zudem jener Anteil der deponierten potenziellen Energie erhalten werden, welcher durch Bildladungsbeschleunigung vor der Oberfläche in kinetische Energie umgewandelt wurde. / Motivated by the incomplete scientific description of the relaxation of highly charged ions in front of solid surfaces and their energy balance, this thesis describes an advanced complementary study of determining deposited fractions and re-emitted fractions of the potential energy of highly charged ions. On one side, a calorimetric measurement setup is used to determine the retained potential energy and on the other side, energy resolved electron spectroscopy is used for measuring the re-emitted energy due to secondary electron emission. In order to study the mechanism of energy retention in detail, materials with different electronic structures are investigated: Cu, n-Si, p-Si and SiO2 . In the case of calorimetry, a linear relationship between the deposited potential energy and the inner potential energy of the ions was determined. The total potential energy which stays in the solid remains almost constant at about (80 ± 10) %. Comparing the results of the Cu, n-Si and p-Si targets, no significant difference could be shown. Therefore we conclude that the difference in energy deposition between copper, n-doped Si and p-doped Si is below 10 %, which is significantly lower than using SiO2 targets. For this purpose, electron spectroscopy provides a complementary result. For Cu and Si surfaces, an almost linear increase of the re-emitted energy with increasing potential energy of the ion up to Ar7+ was also observed. The ratio of the re-emitted energy is about (10 ± 5) % of the total potential energy of the incoming ion, almost independent of the ion charge state. In contrast, an almost vanishing electron emission was observed for SiO2 and for charge states below q=7. For Ar8+ and Ar9+, the electron emission increased due to the contribution of the projectile LMM Auger electrons and the re-emitted energy amounts up to 20 % for Cu and Si and around 10 % for SiO2 .These results are in good agreement with the calorimetric values. In addition, the experimental results are compared with computer simulations based on the extended dynamical over-the-barrier model. From these calculations, the ratio of deposited potential energy that is transformed into kinetic energy before deposition due to the image charge acceleration can be maintained.

Page generated in 0.0839 seconds