• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantification of the Impact of Intermittent Renewable Penetration Levels on Power Grid Frequency Performance Using Dynamic Modeling

Kirby, Elizabeth Ann 01 January 2015 (has links)
As the technology behind renewable energy sources becomes more advanced and cost-effective, these sources have become an ever-increasing portion of the generation portfolios of power systems across the country. While the shift away from non-renewable resources is generally considered beneficial, the fact remains that intermittent renewable sources present special challenges associated with their unique operating characteristics. Because of the high variability of intermittent renewables, the frequency performance of the system to which they are connected can degrade. Generators assigned to regulate frequency, keeping it close to the desired 60 Hz, are forced to ramp up and down quickly in order to offset the rise and fall of the variable resources (in addition to the rise and fall of load), causing transient frequency deviations, power swings, major interface transfer variations and other significant issues. This research measures the impact of intermittent renewable resource penetration level on power system frequency performance, and offers methods for managing that performance. Currently, the generally accepted amount of regulation (rapidly-dispatchable reserve, used as a supplement to base generation on a short time scale to avoid performance issues) is 1% of peak load. Because of the high variability associated with intermittent renewables, including wind generation (the focus of this thesis), it is expected that this amount of regulation must increase in order to maintain adequate system frequency performance. Thus, the primary objective of this thesis is to quantify the amount of regulation necessary to maintain adequate frequency performance as a function of the penetration level of wind generation. Presently, balancing resource requirements are computed, in both industry and in the research literature, using static models, which rely entirely on statistical manipulation of net load, failing to capture the intricacies of dynamic system and generator interactions. Using a dynamic model with high temporal resolution data, instead of these statistical models, this thesis confirms the need for additional regulation as wind generation penetration increases. But beyond that, our research demonstrates an exponentially increasing relationship between necessary regulation and wind generation percentage, indicating that, without further technological breakthroughs, there is a practical limit to the amount of wind generation that a typical system can accommodate. Furthermore, we compare our dynamic model results with those of the statistical models, and show that the majority of current statistical models substantially under-predict the necessary amount of regulation to accommodate significant amounts of wind generation. Finally, we verify that the ramping capability of the regulating generators impacts the amount of necessary regulation, although it is generally ignored in current analysis and related literature.
2

Decentralized Secondary Frequency Control in an Optimized Diesel PV Hybrid System

Vieira Turnell, Alice January 2018 (has links)
This research argues that a diesel-based isolated electrical system can be optimized byintegrating a high share of solar photovoltaic (PV) generation and that the frequencystability of such system can be improved by including the PV participation in frequencyregulation. A case study is developed in order to explore an island’s expansion of theinstalled generating capacity and its optimization. This study uses the tool HOMER tosolve the optimization problem and PowerFactory to verify the frequency stability of theproposed system. The PV integration allows for a reduction of diesel fuel consumption,emissions and generation costs. Additionally, in high PV penetration scenarios, the reducedinertia in such systems can lead to high frequency deviations that may trip the systemprotection. The study demonstrates that the instantaneous frequency deviation after a loadand generation imbalance can be reduced by designing the PVs to operate with an allocatedreserve and a decentralized time-based secondary frequency control. The frequency stabilitywas achieved after different disturbance scenarios under high PV penetration and reducedavailable inertia, indicating that high PV integration is economically and technically feasiblein small island grids. / I detta examensarbete studeras hur ett dieselbaserat och isolerat elsystem kan optimeras genom att integrera en hög andel solceller (PV) i elproduktionen och att frekvensstabilitet kan förbättras när PV användas i regleringen. En fallstudie har utvecklats under denna forskning för att analysera en ökning av den installerade generationskapacitet vid en ö samt hur detta kan optimeras. I denna studie användas verktyget HOMER för modeloptimering och PowerFactory för att testa den optimerade systemfrekvens stabilitet. Med PV generation kan diesel konsumption, utsläpp och kostnader minskas för hela systemet. En hög andel PV i generationen reducerar elsystemet totala svängmassa vilket kan ledda till avvikelser i systemfrekvensen som kan ursaka att skyddsystem aktiveras. Studien demonstrerar att den momentana systemavvikelsen efter en obalans kan reduceras genom att designa PV i systemet med en allokerad reserv och en decentraliserad och tidsbaserad sekundär frekvensreglering. Frekvensstabiliteten nåddes i olika obalans scenarier med hög andel solcellgeneration och misnkat svängsmassa. Detta tyder på att en hög andel PV integration är både ekonomisk- och tekniskt möjligt i mindre elsystem.

Page generated in 0.2424 seconds