• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Metal-organic networks based upon dicarboxylato ligands

Wang, Zhenqiang 01 June 2006 (has links)
Network structures based upon metal-organic backbones represent a new class of functional materials that can be rationally constructed by employing the concepts of supramolecular chemistry and crystal engineering. The modularity of design strategies, the diversity of prototypal structures, and the dynamic features of networks have afforded great advantages over traditional materials syntheses. The research presented in this thesis is primarily concerned with developing an in-depth understanding of the basic principles that govern the supramolecular behaviors of metal-organic networks and gaining an experimental control over the structure and function of these new classes of hybrid materials.The use of rigid and angular organic ligands along with transition metal clusters gives rise to a wide variety of novel metal-organic architectures ranging from zero-dimensional nanostructures to three-dimensional frameworks. Conformational analysis of these structural models suggests the geometric foundations for the existence of superstructural diversity. Controlled crystallization experiments further reveal the synthetic factors that might determine the formation of supramolecular isomers.Careful selection of more labile organic components, on the other hand, leads to flexible metal-organic networks exhibiting dynamic characteristics that have not been observed in their rigid counterparts. The guest-dependent closing/opening of cavities and the ease of fine-tuning their chemical environments demonstrate the effectiveness of such a strategy in the context of generating tailored functional materials.
2

Crystal Engineering of Metal-Carboxylate Based Coordination Polymers

Lu, Jianjiang 29 April 2004 (has links)
This dissertation endeavors to delineate practical paradigms for crystal engineering based upon the understanding of supramolecular chemistry and self-assembly, i.e. the design and synthesis of novel functional crystalline materials. Two basic metal-organic building units, Zn(RCO2)2(py)2 and (L2)M2(RCO2)4 (M = Zn, Cu), as well as nano-scaled secondary building units (nSBUs) that are constructed from Cu2(RCO2)4 are researched and discussed. Design strategies have been developed to propagate these metal-organic synthons into predictable coordination polymer networks. A series of crystal structures, as well as their syntheses and characterization, are presented. This work demonstrates that supramolecular structures can be designed from pre-selected molecular precursors with the consideration of chemical functionalities and geometrical arrangements. The design strategy represents a practical paradigm for the construction of porous materials as well as interesting networks with special topologies. The modular nature of these metal-organic building units introduces a broad impact on the discovery of novel coordination compounds with potential useful properties.
3

Design of metal-organic framework materials based upon inorganic clusters and polycarboxylates

Wang, Zhenqiang 01 June 2006 (has links)
Network structures based upon metal-organic backbones represent a new class of functional materials that can be rationally constructed by employing the concepts of supramolecular chemistry and crystal engineering. The modularity of design strategies, the diversity of prototypal structures, and the dynamic features of networks have afforded great advantages over traditional materials syntheses. The research presented in this dissertation is primarily concerned with developing an in-depth understanding of the basic principles that govern the supramolecular behaviors of metal-organic frameworks and gaining an experimental control over the structure and function of these new classes of hybrid materials. The use of rigid and angular organic ligands along with transition metal clusters gives rise to a wide variety of novel metal-organic architectures ranging from zero-dimensional nanostructures to three-dimensional frameworks. Gas sorption experiments suggest some of these compounds are potentially useful as porous materials. Conformational analysis of these structural models reveals geometrical foundations for the existence of superstructural diversity. Controlled crystallization experiments further indicate synthetic factors that might determine the formation of supramolecular isomers. On the other hand, careful selection of more labile organic components leads to flexible metal-organic frameworks exhibiting dynamic characteristics that have not been observed in their rigid counterparts. The guest-dependent switch-on/off of cavities and the ease of fine-tuning their chemical environments demonstrate the effectiveness of such a strategy in the context of generating tailored functional materials. Discovery and recognition of novel three-periodic metal-organic nets remains a nontrivial exercise. In this context, rigorous topological analysis assists the understanding of complicated nets and application of geometrical principles facilitates desing of new metal-organic structures. Finally, scaled-up metal-organic frameworks are potentially accessible with the aid of existing prototypal structures and a systematic study on ligand design.

Page generated in 0.0923 seconds