Spelling suggestions: "subject:"econdary representation"" "subject:"decondary representation""
1 |
Primary Decomposition and Secondary Representation of Modules over a Commutative RingBaig, Muslim 21 April 2009 (has links)
This paper presents the theory of Secondary Representation of modules over a commutative ring and their Attached Primes; introduced in 1973 by I. MacDonald as a dual to the important theory of associated primes and primary decomposition in commutative algebra. The paper explores many of the basic aspects of the theory of primary decomposition and associated primes of modules in the hopes to delineate and motivate the construction of a secondary representation, when possible. The thesis discusses the results of the uniqueness of representable modules and their attached primes, and, in particular, the existence of a secondary representation for Artinian modules. It concludes with some interesting examples of both secondary and representable modules, highlighting the consequences of the results thus established.
|
2 |
Sobre ideais primos anexados de módulosMenezes, Clemerson Oliveira da Silva 09 March 2016 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-11T12:32:04Z
No. of bitstreams: 1
arquivototal.pdf: 604214 bytes, checksum: ba88d16062ebf0bc144fe2cd43359547 (MD5) / Made available in DSpace on 2017-08-11T12:32:05Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 604214 bytes, checksum: ba88d16062ebf0bc144fe2cd43359547 (MD5)
Previous issue date: 2016-03-09 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / The connection between the theory of local cohomology and the theory of secondary
representation and attached prime ideals is exposed in the work of R. Y. Sharp and
I. G. Macdonald and it displayed itself as very prolific since the statement of various
conditions of vanishing and non-vanishing for some local cohomology modules. In this
work we show that, in some conditions, the (generalised) Matlis dual DR (M ) of a
module M over a semi-local ring R is Artinian, hence representable. Under the same
conditions we show that AttR (DR (M )) = Ass(M ). We also describe the set of attached primes of co-localisations of modules and of some local cohomology modules. The
use for the latter is, as an example, to describe the set of attached primes of the top
local cohomology module Ha dim(R)(R) as the set of prime ideals of R which satisfy the condition of Lichtenbaum–Hartshorne Vanishing Theorem. / A conexão entre a teoria de cohomologia local e a teoria de representação secundária e ideais primos anexados foi exposta nos trabalhos de R. Y. Sharp e I. G. Macdonald e mostrou-se bastante prolı́fica, uma vez que foram estabelecidas condições de anulamento e não anulamento de determinados módulos de cohomologia local. Neste trabalho, provamos que, para determinadas condições, o dual de Matlis (generalizado) de um módulo M , DR (M ), sobre um anel semi-local R, é Artiniano e, portanto, representável.
Sob estas condições, mostramos que AttR DR (M ) = AssM . Além disso, descrevemos os conjuntos de primos anexados de alguns módulos de cohomologia local e módulos via co-localização. Por exemplo, mostramos que o conjunto dos ideais primos anexados do módulo de cohomologia local Ha dim(R)
(R) é justamente o conjunto de ideais primos de R que satisfazem a condição do Teorema de Anulamento de Lichtenbaum–Hartshorne.
|
Page generated in 0.1453 seconds