• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • Tagged with
  • 11
  • 11
  • 10
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cohomologia local formal definida por um par de ideais / Formal local cohomology defined by a pair of idelas

Freitas, Thiago Henrique de 28 September 2015 (has links)
Neste trabalho vamos introduzir duas generalizações do conceito de cohomologia local formal, o qual chamaremos de cohomologia local formal e Cech-cohomologia local formal, ambas definidas por um par de ideais. Estudaremos seu comportamento em diversos aspectos, tais como anulamento e não anulamento, artinianissidade, finitude, relações comadualidade de Matlis,entre outros. Para isto, uilizaremos o conceito da cohomologia local definida por um par de ideais, introduzido em [50]. Estudaremos também o anel de endomorfismo da cohomologia local definida por um par de ideais e analisaremos quando a dualidadede Matlis de certos módulos de cohomologia local definidos por um par de ideais são módulos Cohen-Macaulay. / In this work we will introduce two generalizations of the concept of formal local cohomology, called formal local cohomology and Cech formal local cohomolgy, both defined by a pair of ideals. We study their behavior in several aspects, such as vanishing and non vanishing, artinianness, finiteness, relations with Matlis dual, and others. Forth is purpose, we use the concept of local cohomology defined by a pair of ideals, introduced in [50]. Also, we analyze the endomorphism ring of the local cohomology defined by a pair of ideal and when the Matlis dual of certain local cohomology defined by a pair of ideals are Cohen-Macaulaymodules.
2

Cohomologia local formal definida por um par de ideais / Formal local cohomology defined by a pair of idelas

Thiago Henrique de Freitas 28 September 2015 (has links)
Neste trabalho vamos introduzir duas generalizações do conceito de cohomologia local formal, o qual chamaremos de cohomologia local formal e Cech-cohomologia local formal, ambas definidas por um par de ideais. Estudaremos seu comportamento em diversos aspectos, tais como anulamento e não anulamento, artinianissidade, finitude, relações comadualidade de Matlis,entre outros. Para isto, uilizaremos o conceito da cohomologia local definida por um par de ideais, introduzido em [50]. Estudaremos também o anel de endomorfismo da cohomologia local definida por um par de ideais e analisaremos quando a dualidadede Matlis de certos módulos de cohomologia local definidos por um par de ideais são módulos Cohen-Macaulay. / In this work we will introduce two generalizations of the concept of formal local cohomology, called formal local cohomology and Cech formal local cohomolgy, both defined by a pair of ideals. We study their behavior in several aspects, such as vanishing and non vanishing, artinianness, finiteness, relations with Matlis dual, and others. Forth is purpose, we use the concept of local cohomology defined by a pair of ideals, introduced in [50]. Also, we analyze the endomorphism ring of the local cohomology defined by a pair of ideal and when the Matlis dual of certain local cohomology defined by a pair of ideals are Cohen-Macaulaymodules.
3

Propriedades da homologia local com respeito a um par de ideais e limite inverso de homologia local / Properties of local homology with respect to a pair of ideals and inverse limit of local homology

Tognon, Carlos Henrique 07 October 2016 (has links)
Neste trabalho, introduzimos uma generalização da noção de módulo de homologia local de um módulo com respeito a um ideal, o qual nós chamamos de módulo de homologia local com respeito a um par de ideais. Estudamos suas várias propriedades tais como teoremas de anulamento e de não anulamento, e Artinianidade. Também fazemos sua conexão com a homologia e cohomologia local usual. Introduzimos uma generalização da noção de largura de um ideal sobre um módulo aplicando o conceito de módulo de homologia local com respeito a um par de ideais. Também introduzimos o conceito de um módulo co-Cohen-Macaulay para um par de ideais, o qual é uma generalização o conceito de um módulo co-Cohen-Macaulay. Para finalizar, introduzimos o limite inverso de homologia local, e estudamos algumas de suas propriedades, analisamos a sua estrutura, o anulamento, não anulamento e Artinianidade. / In this work, we introduce a generalization of the notion of local homology module of a module with respect to an ideal, which we call of local homology module with respect to a pair of ideals. We study its various properties such as vanishing and nonvanishing theorems, and Artinianness. We also do its connection with ordinary local homology and cohomology. We introduce a generalization of the notion of width of an ideal on a module applying the concept of local homology module with respect to a pair of ideals. Also we introduce the concept of a co-Cohen-Macaulay module for a pair of ideals, what is a generalization of the concept of a co-Cohen-Macaulay module. To finish, we introduce the inverse limit of local homology, and we study some of its properties, we analyze the their structure, the vanishing, non-vanishing and Artinianness.
4

Local cohomology modules supported on monomial ideals

Àlvarez Montaner, Josep 27 May 2002 (has links)
Sigui R l'anell de polinomis amb coeficients en un cos k de característica zero. El nostre objectiu és, tot seguint la linia de recerca encetada per G. Lyubeznik, utilitzar en profunditat la teoria de D-mòduls per tal d'estudiar els mòduls de cohomologia local de R amb suport un ideal I. En especial, ens interessa descriure de forma efectiva l'anul.lació, les propietats de finitud i entendre millor l'estructura d'aquests mòduls. La principal eina que utilitzarem és un invariant que podem associar als mòduls de cohomologia local i més en general a tot D-mòdul holònom: el cicle característic.En primer lloc demostrem que les multiplicitats del cicle característic dels mòduls de cohomologia local són invariants de l'anell quocient R/I. En el cas dels ideals monomials, aquests invariants ens permeten descriure les resolucions lliures minimals i les propietats aritmètiques de R/I. També descriuen la cohomologia del complementari dels arranjaments de varietats lineals.Seguidament donem una fórmula explícita pel càlcul del cicle característic dels mòduls de cohomologia local amb suport un ideal monomial. Aquesta fórmula ens permet donar una descripció del suport, l'anul.lació, els nombres de Bass i els primers associats d'aquests mòduls a partir de la descomposició primaria minimal de l'ideal I.Per acabar estudiem l'estructura dels mòduls de cohomologia local amb suport un ideal monomial tot utilitzant les següents eines: la filtració que s'obté de la degeneració de la successió espectral de Mayer-Vietoris, la correspondencia de Riemann-Hilbert i la multi-graduació associada a aquests mòduls. / Let R be the polynomial ring over a characteristic zero field k. Our goal is to study the local cohomology modules of R with support an ideal I. To this purpose we follow the path opened by G. Lyubeznik using the theory of D-modules. Our aim is to provide an effective description of the vanishing and the finiteness properties of these modules as well as to have a better understanding of their structure. The main tool we are going to use is an invariant that one may associate to any holonomic D-module: the characteristic cycle. First of all we prove that the multiplicities of the characteristic cycle of local cohomology modules are invariants of the quotient ring R/I. For the case of monomial ideals, these invariants allow us to describe the minimal free resolution and the arithmetical properties of R/I. They also describe the cohomology of the complementary of the corresponding arrangement of linear varieties. We also give an explicit formula to compute the characteristic cycle of a local cohomology module supported on a monomial ideal. This formula allow us to describe the support, the vanishing, the Bass numbers and the associated primes of these modules in terms of the minimal primary decomposition of the ideal I. Finally we study the structure of the local cohomology modules supported on a monomial ideal using the following approaches: the filtration one obtains by the degeneration of the Mayer-Vietoris spectral sequence, the Riemann-Hilbert correspondence and the multi-grading associated to these modules.
5

Uma introdução à Cohomologia local

Sousa, Wállace Mangueira de 20 December 2012 (has links)
Made available in DSpace on 2015-05-15T11:46:14Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 773765 bytes, checksum: b63ba4fb3ff15c5a4aef5a708fce596e (MD5) Previous issue date: 2012-12-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The goal this work is to understand the local cohomology functor, and some of its properties. We show that this functor has a relation with the functor Ext. Furthermore, we show the followings theorems: Grothendieck's Vanishing Theorem, Hartshorne's Vanishing Theorem, Grothendieck's Non-Vanishing Theorem and Hartshorne-Linchenbaum's Vanishing Theorem. / O objetivo desta dissertação é entender o funtor de Cohomologia Local, assim como algumas de suas propriedades. Mostramos que este funtor tem uma relação com o funtor Ext. Além disso, expomos os seguintes teoremas: Teorema do Anulamento de Grothendieck, Teorema do Anulamento de Hartshorne, Teorema do Não Anulamento de Grothendieck e o Teorema do Anulamento de Hartshorne-Linchtenbaum.
6

Propriedades da homologia local com respeito a um par de ideais e limite inverso de homologia local / Properties of local homology with respect to a pair of ideals and inverse limit of local homology

Carlos Henrique Tognon 07 October 2016 (has links)
Neste trabalho, introduzimos uma generalização da noção de módulo de homologia local de um módulo com respeito a um ideal, o qual nós chamamos de módulo de homologia local com respeito a um par de ideais. Estudamos suas várias propriedades tais como teoremas de anulamento e de não anulamento, e Artinianidade. Também fazemos sua conexão com a homologia e cohomologia local usual. Introduzimos uma generalização da noção de largura de um ideal sobre um módulo aplicando o conceito de módulo de homologia local com respeito a um par de ideais. Também introduzimos o conceito de um módulo co-Cohen-Macaulay para um par de ideais, o qual é uma generalização o conceito de um módulo co-Cohen-Macaulay. Para finalizar, introduzimos o limite inverso de homologia local, e estudamos algumas de suas propriedades, analisamos a sua estrutura, o anulamento, não anulamento e Artinianidade. / In this work, we introduce a generalization of the notion of local homology module of a module with respect to an ideal, which we call of local homology module with respect to a pair of ideals. We study its various properties such as vanishing and nonvanishing theorems, and Artinianness. We also do its connection with ordinary local homology and cohomology. We introduce a generalization of the notion of width of an ideal on a module applying the concept of local homology module with respect to a pair of ideals. Also we introduce the concept of a co-Cohen-Macaulay module for a pair of ideals, what is a generalization of the concept of a co-Cohen-Macaulay module. To finish, we introduce the inverse limit of local homology, and we study some of its properties, we analyze the their structure, the vanishing, non-vanishing and Artinianness.
7

On properties about local cohomology modules, finiteness of torsion and extension functors, and integral closure relative to Artinian modules / Propriedades sobre módulos de cohomologia local, finitude dos funtores torção e extensão, e fecho integral relativo a módulos Artinianos

Merighe, Liliam Carsava 19 March 2019 (has links)
Let R be a non-zero commutative Noetherian ring with unit 1 ≠ 0, a be an ideal of R, and M and N be R-modules. This thesis makes a contribution to the study of generalized local cohomology modules, namely Hia (M;N), with applications for the study of attached primes, torsion product and extension functors, and integral closures and multiplicities relative to Artinian modules. In particular, we obtained results on the following topics: counting the number of non-isomorphic top generalized local cohomology modules, conditions to finiteness, cofiniteness, artinianess and representability of generalized local cohomology modules, torsion product and extension functors applied to R-modules, and conditions to equality between some types of integral closures and multiplicities. / Sejam R um anel Noetheriano comutativo com unidade 1 ≠ 0, a um ideal de R e M e N módulos sobre R. Nessa tese, fazemos contribuições ao estudo dos módulos de cohomologia local generalizada, a saber Hia (M;N), com aplicações ao estudo dos ideais primos anexados de R, funtores torção e extensão, e fecho integral e multiplicidades relativos a módulos artinianos. Em particular, estabelecemos resultados nos seguintes temas: contar o número de módulos de cohomologia local generalizados no topo não isomorfos; condições para os módulos de cohomologia local e os funtores torção e extensão aplicados a R-módulos terem características finitas (finitamente gerado, finitos primos associados, etc), serem cofinitos, serem artinianos e serem representáveis; e condições para a igualdade entre tipos de fechos integrais e multiplicidades.
8

Sobre ideais primos anexados de módulos

Menezes, Clemerson Oliveira da Silva 09 March 2016 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-11T12:32:04Z No. of bitstreams: 1 arquivototal.pdf: 604214 bytes, checksum: ba88d16062ebf0bc144fe2cd43359547 (MD5) / Made available in DSpace on 2017-08-11T12:32:05Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 604214 bytes, checksum: ba88d16062ebf0bc144fe2cd43359547 (MD5) Previous issue date: 2016-03-09 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / The connection between the theory of local cohomology and the theory of secondary representation and attached prime ideals is exposed in the work of R. Y. Sharp and I. G. Macdonald and it displayed itself as very prolific since the statement of various conditions of vanishing and non-vanishing for some local cohomology modules. In this work we show that, in some conditions, the (generalised) Matlis dual DR (M ) of a module M over a semi-local ring R is Artinian, hence representable. Under the same conditions we show that AttR (DR (M )) = Ass(M ). We also describe the set of attached primes of co-localisations of modules and of some local cohomology modules. The use for the latter is, as an example, to describe the set of attached primes of the top local cohomology module Ha dim(R)(R) as the set of prime ideals of R which satisfy the condition of Lichtenbaum–Hartshorne Vanishing Theorem. / A conexão entre a teoria de cohomologia local e a teoria de representação secundária e ideais primos anexados foi exposta nos trabalhos de R. Y. Sharp e I. G. Macdonald e mostrou-se bastante prolı́fica, uma vez que foram estabelecidas condições de anulamento e não anulamento de determinados módulos de cohomologia local. Neste trabalho, provamos que, para determinadas condições, o dual de Matlis (generalizado) de um módulo M , DR (M ), sobre um anel semi-local R, é Artiniano e, portanto, representável. Sob estas condições, mostramos que AttR DR (M ) = AssM . Além disso, descrevemos os conjuntos de primos anexados de alguns módulos de cohomologia local e módulos via co-localização. Por exemplo, mostramos que o conjunto dos ideais primos anexados do módulo de cohomologia local Ha dim(R) (R) é justamente o conjunto de ideais primos de R que satisfazem a condição do Teorema de Anulamento de Lichtenbaum–Hartshorne.
9

Cohomologia Local: noções básicas e aplicações

Costa, Diego Alves da 03 February 2017 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The purpose of this dissertation is to introduce the notion of local cohomology as well as some of its applications. Initially, we performed a brief review on the main homological tools used in this work, such as: homology of a complex, isomorphism of complexes, injective resolutions, derived functors, etc. Next, we detail properties of the injective modules in the context of Noetherian rings. Finally, we present di erent ways of de ning local cohomology and we show how this notion is used to investigate the arithmetical rank of an ideal. / O objetivo dessa dissertação é introduzir a noção de cohomologia local bem como algumas de suas aplicações. Inicialmente, realizamos um breve apanhado sobre as principais noções homológicas utilizadas no trabalho, tais como: homologia de um complexo, isomorfismo de complexos, resoluções injetivas, funtores derivados, etc. Em seguida, detalhamos propriedades dos módulos injetivos no contexto dos anéis Noetherianos. Finalmente, apresentamos formas variadas de definir cohomologia local e mostramos como essa noção é utilizada para investigar o posto aritmético de um ideal.
10

A regularidade de Castelnuovo-Mumford de módulos sobre anéis de polinômios

Santos, Júnio Teles dos 20 February 2018 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / David Mumford introduced the concept of regularity of a coherent beam into the projective space in terms of local cohomology, generalizing a classic argument of Castelnuovo. In this dissertation under view of commutative algebra, we will introduce the concept of regularity of finitely generated graduated modules on the ring of polynomials. First, we perform a preliminary study on dimension theory and especially on Hilbert’s function. We also studied the basics of Cohen- Macaulay modules, properties of Betti’s graduated numbers, and the local cohomology functors. In the main chapter, we define the regularity of Castelnuovo-Mumford using the free resolution shifts. Soon after, we show that the definition of regularity can be given in terms of local cohomology, with emphasis on the cases of Artinian and Cohen-Macaulay modules. / David Mumford introduziu o conceito de regularidade de um feixe coerente no espac¸o projetivo em termos de cohomologia local, generalizando um argumento cl´assico de Castelnuovo. Nessa dissertac¸ ˜ao sob a vis˜ao da ´algebra comutativa, introduziremos o conceito de regularidade de m´odulos graduados finitamente gerados sobre o anel de polinˆomios. Primeiramente realizamos um estudo preliminar sobre teoria da dimens˜ao e em especial sobre a func¸ ˜ao de Hilbert. Tamb´em estudamos noc¸ ˜oes b´asicas em m´odulos Cohen-Macaulay, propriedades dos n´umeros graduados de Betti e dos funtores de cohomologia local. No cap´ıtulo principal, definimos a regularidade de Castelnuovo-Mumford utilizando os shifts de resoluc¸ ˜oes livres. Logo ap´os, mostramos que a definic¸ ˜ao de regularidade pode ser dada em termos de cohomologia local, dando ˆenfase aos casos de m´odulos Artinianos e Cohen-Macaulay. / São Cristóvão, SE

Page generated in 0.0408 seconds