Spelling suggestions: "subject:"módulo donacaula"" "subject:"módulo macaulay""
1 |
Módulos de UlrichMaia, Mariana de Brito 29 April 2013 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-21T14:11:17Z
No. of bitstreams: 1
arquivo total.pdf: 931330 bytes, checksum: 351b504f68153fb01d23f3fd1d96d2a0 (MD5) / Made available in DSpace on 2016-03-21T14:11:17Z (GMT). No. of bitstreams: 1
arquivo total.pdf: 931330 bytes, checksum: 351b504f68153fb01d23f3fd1d96d2a0 (MD5)
Previous issue date: 2013-04-29 / In this work, after the introduction of some concepts of Commutative Algebra, for instance
dimension, minimal number of generators, and multiplicity, we prove the existence of a very
special class of modules over Cohen-Macaulay rings, the so-called Ulrich modules. It is known
that, if M is a maximal Cohen-Macaulay module over such ring, then (M) e(M). Our
goal in this study is to prove the main cases where the equality (M) e(M) holds. / Neste trabalho, após introduzirmos alguns conceitos de Álgebra Comutativa, como
dimensão, número mínimo de geradores, e multiplicidade, provamos a existência de uma
classe de módulos bastante especial sobre anéis Cohen-Macaulay, os chamados módulos de
Ulrich. É sabido que, se M é um A-módulo Cohen-Macaulay maximal sobre um tal anel,
então (M) e(M). O objetivo do nosso estudo é demonstrar os principais casos em que
vale (M) = e(M).
|
2 |
Cohomologia Local: noções básicas e aplicaçõesCosta, Diego Alves da 03 February 2017 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The purpose of this dissertation is to introduce the notion of local cohomology as
well as some of its applications. Initially, we performed a brief review on the main
homological tools used in this work, such as: homology of a complex, isomorphism of
complexes, injective resolutions, derived functors, etc. Next, we detail properties of
the injective modules in the context of Noetherian rings. Finally, we present di erent
ways of de ning local cohomology and we show how this notion is used to investigate
the arithmetical rank of an ideal. / O objetivo dessa dissertação é introduzir a noção de cohomologia local bem como algumas de suas aplicações. Inicialmente, realizamos um breve apanhado sobre as principais noções homológicas utilizadas no trabalho, tais como: homologia de um complexo, isomorfismo de complexos, resoluções injetivas, funtores derivados, etc. Em seguida, detalhamos propriedades dos módulos injetivos no contexto dos anéis Noetherianos. Finalmente, apresentamos formas variadas de definir cohomologia local e mostramos como essa noção é utilizada para investigar o posto aritmético de um ideal.
|
3 |
A regularidade de Castelnuovo-Mumford de módulos sobre anéis de polinômiosSantos, Júnio Teles dos 20 February 2018 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / David Mumford introduced the concept of regularity of a coherent beam into the projective
space in terms of local cohomology, generalizing a classic argument of Castelnuovo. In this dissertation
under view of commutative algebra, we will introduce the concept of regularity of finitely
generated graduated modules on the ring of polynomials. First, we perform a preliminary study
on dimension theory and especially on Hilbert’s function. We also studied the basics of Cohen-
Macaulay modules, properties of Betti’s graduated numbers, and the local cohomology functors. In
the main chapter, we define the regularity of Castelnuovo-Mumford using the free resolution shifts.
Soon after, we show that the definition of regularity can be given in terms of local cohomology,
with emphasis on the cases of Artinian and Cohen-Macaulay modules. / David Mumford introduziu o conceito de regularidade de um feixe coerente no espac¸o projetivo
em termos de cohomologia local, generalizando um argumento cl´assico de Castelnuovo.
Nessa dissertac¸ ˜ao sob a vis˜ao da ´algebra comutativa, introduziremos o conceito de regularidade
de m´odulos graduados finitamente gerados sobre o anel de polinˆomios. Primeiramente realizamos
um estudo preliminar sobre teoria da dimens˜ao e em especial sobre a func¸ ˜ao de Hilbert. Tamb´em
estudamos noc¸ ˜oes b´asicas em m´odulos Cohen-Macaulay, propriedades dos n´umeros graduados
de Betti e dos funtores de cohomologia local. No cap´ıtulo principal, definimos a regularidade
de Castelnuovo-Mumford utilizando os shifts de resoluc¸ ˜oes livres. Logo ap´os, mostramos que a
definic¸ ˜ao de regularidade pode ser dada em termos de cohomologia local, dando ˆenfase aos casos
de m´odulos Artinianos e Cohen-Macaulay. / São Cristóvão, SE
|
Page generated in 0.1669 seconds