• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 109
  • 11
  • 10
  • 10
  • 7
  • 5
  • 2
  • 1
  • Tagged with
  • 180
  • 180
  • 62
  • 45
  • 39
  • 28
  • 26
  • 25
  • 21
  • 18
  • 17
  • 16
  • 16
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Structure-Function Study of Telomerase RNA from Evolutionary Disparate Species: Remarkable Divergence in Gross Architecture with the Preservation of Critical Universal Structural Elements

January 2015 (has links)
abstract: Telomerase enzyme is a truly remarkable enzyme specialized for the addition of short, highly repetitive DNA sequences onto linear eukaryotic chromosome ends. The telomerase enzyme functions as a ribonucleoprotein, minimally composed of the highly conserved catalytic telomerase reverse transcriptase and essential telomerase RNA component containing an internalized short template region within the vastly larger non-coding RNA. Even among closely related groups of species, telomerase RNA is astonishingly divergent in sequence, length, and secondary structure. This massive disparity is highly prohibitive for telomerase RNA identification from previously unexplored groups of species, which is fundamental for secondary structure determination. Combined biochemical enrichment and computational screening methods were employed for the discovery of numerous telomerase RNAs from the poorly characterized echinoderm lineage. This resulted in the revelation that--while closely related to the vertebrate lineage and grossly resembling vertebrate telomerase RNA--the echinoderm telomerase RNA central domain varies extensively in structure and sequence, diverging even within echinoderms amongst sea urchins and brittle stars. Furthermore, the origins of telomerase RNA within the eukaryotic lineage have remained a persistent mystery. The ancient Trypanosoma telomerase RNA was previously identified, however, a functionally verified secondary structure remained elusive. Synthetic Trypanosoma telomerase was generated for molecular dissection of Trypanosoma telomerase RNA revealing two RNA domains functionally equivalent to those found in known telomerase RNAs, yet structurally distinct. This work demonstrates that telomerase RNA is uncommonly divergent in gross architecture, while retaining critical universal elements. / Dissertation/Thesis / Doctoral Dissertation Molecular and Cellular Biology 2015
62

Estudo por dinâmica molecular da estabilidade conformacional de dímeros do peptídeo Eumenine mastoparan-AF em água e mistura TFE-água /

Lopes Filho, Fernando César. January 2007 (has links)
Orientador: José Roberto Ruggiero / Banca: Mário Sérgio Palma / Banca: André Farias de Moura / Resumo: Mastoparanos são peptídeos helicoidais, anfipáticos e catiônicos que apresentam diversas funções biológicas, entre elas temos a ação antimicrobiana, que está relacionada à sua afinidade por membranas aniônicas de bactérias e sua capacidade lítica. Recentes estudos têm mostrado que a formação de poros em membranas é facilitada pela agregação de peptídeos carregados. Esta situação favoreceria a hipótese de que a formação de poro é essencialmente similar a eletroporação molecular. Neste trabalho investigamos a estabilidade de um dímero do Eumenine Mastoparan-AF, um membro catiônico (+4) da família dos mastoparanos, em água e mistura TFE-água, mimetizando meio aquoso e meio membranar, respectivamente. Particular atenção foi colocada nas interações eletrostáticas de grupos carregados e polares, principalmente naqueles que participam de ligações de hidrogênio entre os dois peptídeos e na hidratação da cadeia principal e cadeias laterais apolares. Uma estrutura dimérica representativa foi inicialmente obtida por um método de docking rígido e submetida às simulações de dinâmica molecular usando o pacote GROMACS. Resultados de 50 ns de simulação em água mostram uma perda parcial do conteúdo helicoidal dos peptídeos e a estrutura dimérica se desestrutura devido às interações desfavoráveis dos resíduos hidrofóbicos com a água. Por outro lado, simulações em mistura TFE-água mostram que o dímero é estável durante o tempo observado, porque as moléculas de TFE se agrupam ao redor de resíduos hidrofóbicos criando um meio apropriado que protege as ligações de hidrogênio intra- e inter-peptídeos. Surpreendentemente, parece que a repulsão eletrostática não é a principal razão para a desagregação do dímero, o que reforça a importância da. / Abstract: Mastoparans are helical, amphipathic and cationic peptides that display many biological functions, among which is the antimicrobial activity, which is related to its affinity for anionic membranes of bacteria and its lytic capacity. Recent studies have shown that pore formation on membranes is facilitated by the aggregation of charged peptides. This situation would favor the hypothesis that pore formation is essentially similar to the molecular electroporation. In this work, we investigate the stability of a dimer of the Eumenine Mastoparan-AF, a cationic (+4) member of the Mastoparan family, in water and TFE-water mixture, mimicking aqueous and membrane environments, respectively. Particular attention have been put on the electrostatic interactions of charged and polar groups, mainly those participating of hydrogen bonds between the two peptides and on the hydration of the backbone and apolar side chains. A representative dimer conformation was initially obtained by a rigid docking procedure and submitted to molecular dynamics simulations using the GROMACS package. Results of 50 ns of simulation in water show a partial loose of the helical content of the peptides and the dimer structure breaks down due to unfavorable interactions of hydrophobic residues with water. On the other hand, simulations in TFE-water mixture show the dimer is stable in the running time, because TFE molecules assemble around hydrophobic residues creating a suitable environment that protect the intra- and inter-peptides hydrogen bonds. Surprisingly, it seems that electrostatic repulsion is not the main reason for disaggregation of the dimer what reinforces both the importance of aggregation and the molecular electroporation mechanism for pore formation. / Mestre
63

Estudo por dinâmica molecular da estabilidade conformacional de dímeros do peptídeo Eumenine mastoparan-AF em água e mistura TFE-água

Lopes Filho, Fernando César [UNESP] 22 March 2007 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:54Z (GMT). No. of bitstreams: 0 Previous issue date: 2007-03-22Bitstream added on 2014-06-13T18:49:56Z : No. of bitstreams: 1 lopesfilho_fc_me_sjrp.pdf: 770782 bytes, checksum: 9373005f0d61b57eee8eaf4f430acc27 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Mastoparanos são peptídeos helicoidais, anfipáticos e catiônicos que apresentam diversas funções biológicas, entre elas temos a ação antimicrobiana, que está relacionada à sua afinidade por membranas aniônicas de bactérias e sua capacidade lítica. Recentes estudos têm mostrado que a formação de poros em membranas é facilitada pela agregação de peptídeos carregados. Esta situação favoreceria a hipótese de que a formação de poro é essencialmente similar a eletroporação molecular. Neste trabalho investigamos a estabilidade de um dímero do Eumenine Mastoparan-AF, um membro catiônico (+4) da família dos mastoparanos, em água e mistura TFE-água, mimetizando meio aquoso e meio membranar, respectivamente. Particular atenção foi colocada nas interações eletrostáticas de grupos carregados e polares, principalmente naqueles que participam de ligações de hidrogênio entre os dois peptídeos e na hidratação da cadeia principal e cadeias laterais apolares. Uma estrutura dimérica representativa foi inicialmente obtida por um método de docking rígido e submetida às simulações de dinâmica molecular usando o pacote GROMACS. Resultados de 50 ns de simulação em água mostram uma perda parcial do conteúdo helicoidal dos peptídeos e a estrutura dimérica se desestrutura devido às interações desfavoráveis dos resíduos hidrofóbicos com a água. Por outro lado, simulações em mistura TFE-água mostram que o dímero é estável durante o tempo observado, porque as moléculas de TFE se agrupam ao redor de resíduos hidrofóbicos criando um meio apropriado que protege as ligações de hidrogênio intra- e inter-peptídeos. Surpreendentemente, parece que a repulsão eletrostática não é a principal razão para a desagregação do dímero, o que reforça a importância da. / Mastoparans are helical, amphipathic and cationic peptides that display many biological functions, among which is the antimicrobial activity, which is related to its affinity for anionic membranes of bacteria and its lytic capacity. Recent studies have shown that pore formation on membranes is facilitated by the aggregation of charged peptides. This situation would favor the hypothesis that pore formation is essentially similar to the molecular electroporation. In this work, we investigate the stability of a dimer of the Eumenine Mastoparan-AF, a cationic (+4) member of the Mastoparan family, in water and TFE-water mixture, mimicking aqueous and membrane environments, respectively. Particular attention have been put on the electrostatic interactions of charged and polar groups, mainly those participating of hydrogen bonds between the two peptides and on the hydration of the backbone and apolar side chains. A representative dimer conformation was initially obtained by a rigid docking procedure and submitted to molecular dynamics simulations using the GROMACS package. Results of 50 ns of simulation in water show a partial loose of the helical content of the peptides and the dimer structure breaks down due to unfavorable interactions of hydrophobic residues with water. On the other hand, simulations in TFE-water mixture show the dimer is stable in the running time, because TFE molecules assemble around hydrophobic residues creating a suitable environment that protect the intra- and inter-peptides hydrogen bonds. Surprisingly, it seems that electrostatic repulsion is not the main reason for disaggregation of the dimer what reinforces both the importance of aggregation and the molecular electroporation mechanism for pore formation.
64

Predikce sekundární struktury proteinu pomocí hlubokých neuronových sítí / Protein secondary structure prediction using deep neural networks

Filippi, Michal January 2017 (has links)
Determination of protein structure in space is a crucial part of protein function analysis. But structure determination is an expensive and time consuming pro- cess, therefore structure prediction model raised on popularity. The most notable subproblem of protein structure prediction is prediction of local conformation of the adjacent amino acids, ie. secondary structure. This thesis studies usage of deep neural networks for protein secondary structure prediction. We implemented pre- diction model and different modifications are evaluated. Especially compassion of LSTM and GRU memory cells was done. Furthermore, two new preprocessing me- thods are evaluated. Fast PSSM calculation method was proposed and prediction of tertiary structure was used as input for prediction model. Last part of this thesis examine application of filtering methods for models predicting secondary structure with eight classes. 1
65

Determination of endosperm protein secondary structure in hard wheat breeding lines using synchrotron infrared microspectroscopy and revelation of secondary structural changes in protein films with thermal processing

Bonwell, Emily Susanne January 1900 (has links)
Master of Science / Department of Grain Science and Industry / David L. Wetzel / Fourier transform infrared microspectroscopy was used to determine protein secondary structure in hard wheat breeding lines in situ, providing a molecular means to rank endosperm hardness for the selection of wheat cultivars for a specific end-use. Mapping with a single masked spot size diameter of 4.5 [Mu]m or confocal 5 [Mu]μm on beamlines U10B and U2B, respectively, produced spectra from the subaleurone layer within each wheat kernel using the high spatial resolution available with synchrotron infrared microspectroscopy. This procedure was used for the first four crop years. A focal plane array instrument was adapted for use for the remaining two crop years with a slight reduction of spatial resolution. Deconvolution and curve fitting were applied to the amide I region of spectra selected from the interstitial protein between the starch granules, and the relative amount of [Alpha]-helix to other protein secondary structures was revealed. Over six crop years, the [Alpha]-helix to [Beta]-sheet ratio of experimental wheat varieties were compared to those of released varieties in 143 mapping experiments. The highest measurable value was 2.50 while the lowest was 1.11, a range consistent with hard wheat secondary structure determination found in previous studies (13, 16). The determination of protein secondary structure provides a means of ranking experimental breeding lines for selection in specific end-use applications. FT-IR microspectroscopic imaging was used to develop a method, using myoglobin as the model protein, to study the effects of thermal processing to 100 [degrees]C on protein secondary structure. Films cast onto highly polished stainless steel plates allowed the study of the exact same film before and after heating. Analyzing the shift in the amide I peak maxima of reflection absorption spectra for 280 pixels from myoglobin films revealed the depletion of [Alpha]-helix at the expense of other protein secondary structures. Deconvolution and curve fitting techniques were applied to the amide I region of each spectral average to model protein secondary structure components found within the region. The method developed was applied to another animal source, gelatin, and a plant source, wheat gluten.
66

Using SetPSO to determine RNA secondary structure

Neethling, Charles Marais 16 February 2009 (has links)
RNA secondary structure prediction is an important field in Bioinformatics. A number of different approaches have been developed to simplify the determination of RNA molecule structures. RNA is a nucleic acid found in living organisms which fulfils a number of important roles in living cells. Knowledge of its structure is crucial in the understanding of its function. Determining RNA secondary structure computationally, rather than by physical means, has the advantage of being a quicker and cheaper method. This dissertation introduces a new Set-based Particle Swarm Optimisation algorithm, known as SetPSO for short, to optimise the structure of an RNA molecule, using an advanced thermodynamic model. Structure prediction is modelled as an energy minimisation problem. Particle swarm optimisation is a simple but effective stochastic optimisation technique developed by Kennedy and Eberhart. This simple technique was adapted to work with variable length particles which consist of a set of elements rather than a vector of real numbers. The effectiveness of this structure prediction approach was compared to that of a dynamic programming algorithm called mfold. It was found that SetPSO can be used as a combinatorial optimisation technique which can be applied to the problem of RNA secondary structure prediction. This research also included an investigation into the behaviour of the new SetPSO optimisation algorithm. Further study needs to be conducted to evaluate the performance of SetPSO on different combinatorial and set-based optimisation problems. / Dissertation (MS)--University of Pretoria, 2009. / Computer Science / unrestricted
67

Factors Affecting Translational Efficiency of Bacteriophages

Prabhakaran, Ramanandan January 2015 (has links)
Mass production of translationally optimized bacteriophages (hereafter referred to as phages) is the need of the hour in the application of phages to therapy. Understanding translational efficiency of phages is the major preliminary step for mass producing efficient phages. The objective of this thesis is to understand factors affecting translational efficiency of phages. In chapter two, we hypothesized that weak translation initiation efficiency is responsible for weak codon concordance of Escherichia coli lambdoid phages with that of their hosts. We measured the strength of translation initiation using two indices namely minimum folding energy (MFE) and proportion of Shine-Dalgarno sequence (PSD). Empirical results substantiate our hypothesis suggesting lack of strong selection for improving codon adaptation in these phages is due to their weak translation initiation. In chapter three, we measured codon usage concordance between GC-rich and GC-poor Aeromonas phages with their GC-rich host Aeromonas salmonicida. We found low codon usage concordance in the GC-poor Aeromonas phages. We were interested in testing for the role of tRNAs in the GC-poor phages. We observed that the GC-poor phages carry tRNAs for codons that are overused by the phages and underused by the host. These findings suggest that the GC-poor Aeromonas phages carry their own tRNAs for compensating for the compositional difference between their genomes and that of their host. Previously several studies have reported observed avoidance of stable secondary structures in start site of mRNA in a wide range of species. We probed the genomes of 422 phage species and measured their secondary structure stability using MFE. We observed strong patterns of secondary structure avoidance (less negative MFE values) in the translation initiation region (TIR) and translation termination region (TTR) of all analyzed phages. These findings imply selection is operating at these translationally important sites to control stable secondary structures in order to maintain efficient translation.
68

Solubilisation des oléosines de graines d'Arabidopsis thaliana, études structurales pour la valorisation / Solubilization and structural characterization of Arabidopsis thaliana seed oleosins

Vindigni, Jean-David 12 December 2011 (has links)
Les corps lipidiques (CLs) sont des organites de stockage de lipides neutres rencontrés dans des organismes très variés, depuis les procaryotes jusqu’aux organismes complexes (animaux, végétaux). La surface des CLs est constituée d’une monocouche de phospholipides (PLs) entourant un coeur hydrophobe dans lequel sont stockés les lipides neutres. La monocouche de PLs est associée plus ou moins étroitement avec des protéines structurales, capables de stabiliser les CLs et d’accompagner certaines de leurs modifications morphologiques. Dans les graines de plantes oléagineuses, les CLs sont stabilisés par les oléosines. Ces protéines contiennent le plus long domaine hydrophobe connu (70 résidus) situé entre deux extrémités N et C-terminales hydrophiles. Leur mode d’association avec les CLs n’est pas connu et la littérature fait état de résultats contradictoires concernant leur structure secondaire. Nous avons montré que les oléosines de graines d’Arabidopsis thaliana sont maintenues en solution par différentes catégories de surfactants, comme les détergents anioniques ou des polymères amphiphiles appelés amphipols (Apols). La détermination de la structure secondaire des oléosines maintenues en solution dans ces différents surfactants, par dichroïsme circulaire utilisant le rayonnement synchrotron, a mis en évidence des profils contrastés. Les détergents chargés augmentent le contenu en hélices α des oléosines alors que des proportions plus importantes de feuillets β sont observées avec le détergent zwitterionique (Foscholine-12) ou les Apols. Afin d’obtenir un profil structural modèle dans un système proche du naturel, nous avons réalisé une expression hétérologue d’une isoforme d’oléosine pour la cibler dans les CLs de Saccharomyces cerevisiae. Les CLs purifiés de levures restent intacts et contiennent une forte majorité de cette isoforme d’oléosine à leur surface. Nous avons été les premiers à montrer que les oléosines étaient repliées dans un tel environnement, avec un profil structural majoritairement β. Celui-ci se rapproche du profil observé en Foscholine-12. Ce détergent est par conséquent un outil de choix pour envisager des études structurales plus résolutives (structures tridimensionnelles). / Lipid Bodies (LBs) are neutral lipid storage organelles found in various organisms from procaryotic cells to complex organisms. These neutral lipids are packed into the core of the particle which is surrounded by a phospholipid monolayer. The surface of LBs is more or less tightly associated with structural proteins involved in their stabilization and able to assist modifications of their shape or size. In oleaginous seeds, LBs are stabilized by oleosins. These proteins contain the longest known hydrophobic domain (70 residues) flanked by hydrophilic N and C-termini. The way of association of these proteins with LBs is poorly known and secondary structure descriptions in the literature are contradictory. We have shown that Arabidopsis thaliana seed oleosins could be solubilized by various surfactants such as detergents or amphiphatic polymers called amphipols (Apols). Secondary structure determination of solubilized oleosins using synchrotron radiation circular dichroism gave contrasted profiles. Negatively charged detergents increase the α-helix content of oleosins whereas the zwitterionic detergent (Foscholine-12) or Apols allow higher proportions of β-sheets. In order to get closer to the natural environment of olesins, we have opted for the heterologous expression of one oleosin isoform in the yeast Saccharomyces cerevisiae. This approach allows the biological targeting and insertion of oleosins into cytosolic LBs. Purified yeast LBs remain intact and contain a large majority of oleosins at their surface. In this natural like environment, oleosins are folded and contain a majority of β-sheets. This secondary structure profile is close to that of oleosins solubilized by Foscholin-12, making it a suitable detergent for more resolutive structural studies (three-dimensional structures).
69

Klasifikace bakterií do taxonomických kategorií na základě vlastností 16s rRNA / Bacteria Classification into Taxonomic Categories Based on Properties of 16s rRNA

Grešová, Katarína January 2020 (has links)
The main goal of this thesis was to design and implement a tool that would be able to classify the sequences of the 16S rRNA gene into taxonomic categories using the properties of the 16S rRNA gene. The created tool analyzes all input sequences simultaneously, which differs from common classification approaches, which classify input sequences individually. This tool relies on the fact that bacteria contain several copies of the 16S rRNA gene, which may differ in sequence. The main contribution of this work is design, implementation and evaluation of the capabilities of this tool. Experiments have shown that the proposed tool is able to identify the corresponding bacteria for smaller datasets and determine the correct ratios of their abundances. However, with larger datasets, the state space becomes very large and fragmented, which requires further improvements in order for it to search the state space in an efficient way.
70

KnotAli: informed energy minimization through the use of evolutionary information

Gray, Mateo 31 August 2021 (has links)
Motivation: Improving the prediction of structures, especially those containing pseudoknots (structures with crossing base pairs) is an ongoing challenge. Current alignment-based prediction algorithms only find the consensus structure, and their alignments can come from structure-based alignment algorithms, which is more reliable, but come with an increased cost compared to sequence-based alignment algorithms. This step can be removed; however, non-alignment based algorithms neglect structural information that can be found within similar sequences. Results: We present a new method for prediction of RNA pseudoknotted secondary structures that combines the strengths of MFE prediction and alignment-based methods. KnotAli takes an RNA sequence alignment and uses covariation and thermodynamic energy minimization to predict secondary structures for each individual sequence in the alignment. We compared KnotAli's performance to that of three other alignment-based algorithms, on a large data set of 10 families with pseudoknotted and pseudoknot-free reference structures. We produced sequence alignments for each family using two well-known sequence aligners (MUSCLE and MAFFT). We found KnotAli to be superior in 6 of the 10 families for MUSCLE and 7 of the 10 for MAFFT. We find KnotAli's predictions to be less dependent on alignment quality. In particular, KnotAli is shown to have more accurate predictions compared to other leading methods as alignment quality deteriorates. Availability: The algorithm can be found online on Github at https://github.com/mateog4712/KnotAli / Graduate / 2022-08-16

Page generated in 0.0615 seconds