Spelling suggestions: "subject:"secretory inga"" "subject:"decretory inga""
1 |
Development of a dna vaccine against _streptococcus mutans_: A novel approach to immunization against dental cariesHan, Thomas 01 June 2005 (has links)
Streptococcus mutans is the main causative agent of dental caries, which is a widespread infectious disease. A number of surface molecules are involved in the pathogenicity of this organism, including adherence and aggregation factors. The wall-associated protein A (WapA) of Streptococcus mutans GS-5 was previously demonstrated to be a sucrose-dependent adherence and aggregation factor, and is a larger precursor to extracellular antigen A (AgA), a candidate antigen for a dental caries vaccine.The full-length wapA gene and a C-terminal truncated version agA encoding the AgA were cloned into the mammalian expression vector pcDNA 3.1/V5/His-TOPO. The above constructs were mixed with a cationic lipid and used to transfect Chinese hamster ovary (CHO) cells. Transient expression of the wapA and agA genes was observed at 24 h post-transfection, as shown by Western immunoblot analysis.
In CHO, cells WapA containing the membrane and wall-spanning region was found in apoptotic bodies, whereas the soluble AgA, which lacked the hydrophobic region, was found in extracellular medium. A higher salivary IgA level was observed in mice immunized with the pcDNA-wapA vaccine as compared to those immunized with the pcDNA-agA vaccine. Furthermore, the anti-WapA antibody inhibited S. mutans sucrose-dependent adherence, suggesting potential protection of the tooth against S. mutans colonization, while anti-AgA had no significant effect. Indeed, prediction and analysis of protein epitopes showed that WapA contains highly promiscuous MHC-II binding motifs that are absent from AgA. Immunodot assay confirmed that WapA bound biotin-labeled dextran, whereas AgA did not.
|
2 |
Defining the Gut-Mammary Gland-Secretory IgA Axis in Porcine Epidemic Diarrhea Virus Infected Gilts and its Impact on Lactogenic Immune Protection of Neonatal Suckling PigletsLangel, Stephanie Mary Neal January 2018 (has links)
No description available.
|
3 |
Early-life gut microbiota and breast milk oligosaccharides in relation to childhood immune maturation and allergySjögren, Ylva Margareta January 2009 (has links)
Atopic allergy is the most common chronic disease among children in the developed world. This high prevalence could be associated with low microbial exposure. The early gut microbiota appears to be important for immune maturation. Immunomodulatory components in human milk might differ between mothers and could therefore explain the contradictory results seen regarding breastfeeding and allergy development. The aim of this thesis was to investigate whether early colonization with certain gut microbiota species influences childhood immune responses and allergy development up to age five. Also, as human milk oligosaccharides (HMOs) might stimulate the growth of certain gut microbiota species, the consumption of neutral colostrum HMOs was investigated for their role in allergy development up to 18 months. The concentrations of neutral colostrum HMOs varied considerably between women; however this variation could not be explained by their allergic status. Neither was the consumption of neutral colostrum HMOs related to allergy development in their children up to 18 months. Infants who harboured lactobacilli group I and Bifidobacterium adolescentis one week after birth developed allergic disease less frequently during their first five years than infants who did not harbour these bacteria at the same time. Also, colonization with several Bifidobacterium species was associated with higher levels of house dust endotoxin and larger family size. The early Bifidobacterium flora influenced levels of salivary secretory IgA at six and 12 months but not during later childhood. Moreover, the intensity of early Bacteroides fragilis colonization was inversely associated with spontaneous Toll-like receptor 4 mRNA expression in peripheral blood cells collected 12 months after birth. In conclusion, these results indicate that the early infant gut microbiota influences systemic and mucosal immune maturation during infancy, and that it might be altered in infants developing allergic disease.
|
Page generated in 0.0707 seconds