• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rozšíření projektu Systemd-boot o podporu protokolu Secure Boot / Support of Secure Boot in Systemd-Boot Project

Sekletár, Michal January 2016 (has links)
The aim of this master thesis is to convey an ellaborate overview of Secure Boot, the technology used for an authentization during a platfrom boot up. Overview is followed by a description of contemporary implementations of Secure Boot found in the operating systems based on the Linux kernel. Finally, we propose a new implemenation of Secure Boot support in the systemd-boot project.
2

Trusted memory acquisition using UEFI

Markanovic, Michel, Persson, Simeon January 2014 (has links)
Context. For computer forensic investigations, the necessity of unmodified data content is of vital essence. The solution presented in this paper is based on a trusted chain of execution, that ensures that only authorized software can run. In the study, the proposed application operates in an UEFI environment where it has a direct access to physical memory, which can be extracted and stored on a secondary storage medium for further analysis. Objectives. The aim is to perform this task while being sheltered from influence from a potentially contaminated operating system. Methods. By identifying key components and establishing the foundation for a trusted environment where the memory imaging tool can, unhindered, operate and produce a reliable result Results. Three distinct states where trust can be determined has been identified and a method for entering and traversing them is presented. Conclusions. Tools that does not follow the trusted model might be subjected to subversion, thus they might be considered inadequate when performing memory extraction for forensic purposes.
3

Hardware Root of Trust for Linux Based Edge Gateway

Al-Galby, Mohamed, Arezou, Madani January 2018 (has links)
Linux-based Edge Gateways that connects hundreds or maybe thousands of IoT devices, are exposed to various threats and cyber-attacks from the internet. These attacks form a considerable risk targeting the privacy and confidentiality of IoT devices throughout their gateways. Many researches and studies have been conducted to alleviate such a problem. One of the solutions can be achieved by building a root of trust based on a hardware module such as Trusted Platform Module (TPM) or software like Trusted Execution Environment (TEE). In this work, we provide a solution to the problem by enabling Hardware Root of Trust (HRoT) using TPM on a product from HMS Industrial Network AB known as GWen board, a Linux-based embedded system, used as gateway to connect IoT devices. We describe a method that uses the processor of the GWen (i.e. Zynq-7020 FPGA SoC) to enable secure boot. Besides, we provide a method to enable the TPM chip mounted on the GWen (i.e. SLB 9670 TPM 2.0) using TPM Software Stack TSS 2.0. We demonstrated, in detail, various use-cases using the TPM on GWen including cryptographic keys generation, secure key storage and key usage for different cryptographic operations. Furthermore, we conducted an analysis to the adopted solution by inspecting the latency of TPM commands on the GWen gateway. According to the high restrictions of TPM 2.0 specifications and based on our results, adding the TPM 2.0 to the IoT gateway GWen will enhance the security of its Linux distribution and will makes it possible to securely identify and authenticate the gateway on the network based on its secret keys that are stored securely inside its TPM.

Page generated in 0.0378 seconds