Spelling suggestions: "subject:"sediments (deology) microbiology"" "subject:"sediments (deology) microbiologyc""
1 |
Microbial activity in sediments effects on soil behavior /Rebata-Landa, Veronica. January 2007 (has links)
Thesis (Ph.D)--Civil and Environmental Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Santamarina, J. Carlos; Committee Member: Burns, Susan; Committee Member: Frost, David; Committee Member: Mitchell, James; Committee Member: Rix, Glenn; Committee Member: Sobecky, Patricia.
|
2 |
Geomicrobiology of the ocean crust : the phylogenetic diversity, abundance, and distribution of microbial communities inhabiting basalt and implications for rock alteration processesSantelli, Cara M January 2007 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2007. / Includes bibliographical references. / Basaltic ocean crust has the potential to host one of the largest endolithic communities on Earth. This portion of the biosphere, however, remains largely unexplored. In this study, we utilize molecular biological, microscopic, and geochemical tools to gain a better understanding of the geomicrobiology of the ocean crust. Specifically, we examine the phylogenetic diversity of microorganisms inhabiting basaltic lavas, the activities and abundances of these microorganisms, the spatial extent of the biosphere, and the potential effect that microbial activity has on the geochemistry of the ocean crust and overlying water column. Our study demonstrates that young, fresh volcanic lavas near mid-ocean ridges host an incredibly diverse and dense population of microorganisms dominated by Bacteria, quite distinct from the microbial communities found in surrounding deep seawater and hydrothermal vents. Furthermore, these communities may contribute to the elemental cycling of Fe, S, Mn, N, and C in this environment. The inability to definitively identify microorganisms in drill-cores of old (> 15 Ma) ocean crust, however, implies that these once prolific communities may become scarce as the crust ages and moves further away from the ridge axis. Finally, we provide evidence suggesting that these communities are fueled by oxidative alteration reactions occurring in the basaltic crust. / by Cara M. Santelli. / Ph.D.
|
3 |
Microbiology of basalts targeted for deep geological carbon sequestration : field observations and laboratory experimentsLavalleur, Heather J. 15 June 2012 (has links)
With rising concentrations of CO₂ in the Earth's atmosphere causing
concern about climate change, many solutions are being presented to
decrease emissions. One of the proposed solutions is to sequester excess
CO₂ in geological formations such as basalt. The deep subsurface is known
to harbor much of the microbial biomass on earth and questions abound as to
how this deep life is going to respond to the injection of CO₂. Many studies
have used model microorganisms to demonstrate the ability of microbes to aid
in the safe, permanent sequestration of CO₂ in the subsurface. The objective
of this research is to characterize the microbial community present in the
basalts at the Wallula pilot carbon sequestration well prior to the injection of
CO₂ and then perform laboratory studies to determine how the native microbial
community will respond to carbon sequestration conditions. Six samples were
collected from the Wallula pilot well prior to the injection of CO₂ into the
system. The microorganisms in these samples were characterized by
pyrosequencing of 16S rRNA genes, revealing a community dominated by the
Proteobacteria, Firmicutes, and Actinobacteria. The organisms detected were
related to microbes known to metabolize hydrogen, sulfur, and single carbon
compounds. These microorganisms may be stimulated in formations located
at the fringe of the pool of injected CO₂. Laboratory studies revealed that the
native microbial community suffered a two order of magnitude loss of
population upon exposure to CO₂ under carbon sequestration conditions. The
community also shifted from being dominated by Proteobacteria prior to CO₂
exposure to being dominated by Firmicutes after exposure. Specifically, the
genus Alkaliphilus, which was previously undetected, appeared after CO₂
exposure and became dominant. The dominance of Alkaliphilus, along with
other rare organisms which did not compose a majority of the population prior
to the introduction of CO₂ to the system, indicates that members of the rare
biosphere may be better adapted to changing environmental conditions
specific to CO₂ sequestration than other indigenous cells. Thus, the rare
biosphere should be examined closely as part of any environmental study, as
these minority microorganisms may be the first indication of perturbation or
impact. / Graduation date: 2013
|
Page generated in 0.0707 seconds