• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Segmentation de personnes dans les images et les vidéos

Migniot, Cyrille 17 January 2012 (has links) (PDF)
La segmentation de personnes dans les images et les vidéos est une problématique actuellement au coeur de nombreux travaux. Nous nous intéressons à la segmentation de personnes debout. Pour cela, nous avons mis au point deux méthodes originales : La première est une continuation d'une méthode de détection efficace. On réalise une pré-segmentation en associant aux segments de contour de l'image une valeur de vraisemblance en tant qu'élément d'une silhouette humaine par une combinaison d'histogrammes de gradients orientés (HOG) et de machines à vecteurs de support (SVM) prises à l'échelle des ces segments. Une recherche d'arbre optimal dans un graphe intégrant les données de la pré-segmentation permet de reconstruire la silhouette de la personne. Enfin, une utilisation itérative de ce processus permet d'en améliorer la performance. La seconde méthode prend en compte l'interaction de l'utilisateur pour une image. Une coupe de graphe est guidée par un gabarit non binaire représentant une silhouette humaine. Nous proposons également un gabarit par parties pour s'adapter à la posture de la personne. Nous avons enfin transposé cette méthode à la segmentation de vidéos et la réalisation automatique de trimaps.
2

Segmentation morphologique interactive pour la fouille de séquences vidéo

Weber, Jonathan 30 September 2011 (has links) (PDF)
Nous observons actuellement une augmentation importante du volume de données vidéo disponibles. L'utilisation efficace de cette masse de données nécessite d'en extraire de l'information. Dans cette thèse, nous proposons d'utiliser les méthodes de fouille de données et de les appliquer sur les objets-vidéo d'intérêt afin de combler le fossé sémantique en impliquant l'utilisateur dans le processus. Extraire ces objets à partir des pixels nécessite de manipuler un grand volume de données, induisant un traitement coûteux (en temps et en mémoire) peu compatible avec une implication interactive de l'utilisateur. Ainsi, nous proposons d'appliquer le processus interactif de segmentation sur une réduction des données, les zones quasi-plates. N'étant définies que pour les images fixes, nous proposons une extension des zones quasi-plates aux séquences vidéo ainsi qu'une nouvelle méthode de filtrage. La segmentation est effectuée interactivement par l'utilisateur qui dessine des marqueurs sur les objets d'intérêt afin de guider la fusion des zones quasi-plates composant ces objets. Elle est effectuée sur un graphe d'adjacence de régions représentant les zones quasi-plates spatiotemporelles ainsi que leurs relations d'adjacence. L'utilisation de cette structure assure un faible temps de calcul. Les objets-vidéo obtenus sont ensuite utilisés dans un processus de fouille interactif guidé par des descripteurs extraits automatiquement de la video et des informations données par l'utilisateur. La forte interactivité avec l'utilisateur, à la fois lors de l'étape de segmentation puis lors de l'étape de fouille favorise la synergie entre données numériques et interprétation humaine.
3

Segmentation interactive multiclasse d'images par classification de superpixels et optimisation dans un graphe de facteurs / Interactive multi-class image segmentation using superpixel classification and factor graph-based optimisation

Mathieu, Bérangère 15 November 2017 (has links)
La segmentation est l'un des principaux thèmes du domaine de l'analyse d'images. Segmenter une image consiste à trouver une partition constituée de régions, c'est-à-dire d'ensembles de pixels connexes homogènes selon un critère choisi. L'objectif de la segmentation consiste à obtenir des régions correspondant aux objets ou aux parties des objets qui sont présents dans l'image et dont la nature dépend de l'application visée. Même s'il peut être très fastidieux, un tel découpage de l'image peut être facilement obtenu par un être humain. Il n'en est pas de même quand il s'agit de créer un programme informatique dont l'objectif est de segmenter les images de manière entièrement automatique. La segmentation interactive est une approche semi-automatique où l'utilisateur guide la segmentation d'une image en donnant des indications. Les méthodes qui s'inscrivent dans cette approche se divisent en deux catégories en fonction de ce qui est recherché : les contours ou les régions. Les méthodes qui recherchent des contours permettent d'extraire un unique objet correspondant à une région sans trou. L'utilisateur vient guider la méthode en lui indiquant quelques points sur le contour de l'objet. L'algorithme se charge de relier chacun des points par une courbe qui respecte les caractéristiques de l'image (les pixels de part et d'autre de la courbe sont aussi dissemblables que possible), les indications données par l'utilisateur (la courbe passe par chacun des points désignés) et quelques propriétés intrinsèques (les courbes régulières sont favorisées). Les méthodes qui recherchent les régions groupent les pixels de l'image en des ensembles, de manière à maximiser la similarité en leur sein et la dissemblance entre les différents ensembles. Chaque ensemble correspond à une ou plusieurs composantes connexes et peut contenir des trous. L'utilisateur guide la méthode en traçant des traits de couleur qui désignent quelques pixels appartenant à chacun des ensembles. Si la majorité des méthodes ont été conçues pour extraire un objet principal du fond, les travaux menés durant la dernière décennie ont permis de proposer des méthodes dites multiclasses, capables de produire une partition de l'image en un nombre arbitraire d'ensembles. La contribution principale de ce travail de recherche est la conception d'une nouvelle méthode de segmentation interactive multiclasse par recherche des régions. Elle repose sur la modélisation du problème comme la minimisation d'une fonction de coût pouvant être représentée par un graphe de facteurs. Elle intègre une méthode de classification par apprentissage supervisé assurant l'adéquation entre la segmentation produite et les indications données par l'utilisateur, l'utilisation d'un nouveau terme de régularisation et la réalisation d'un prétraitement consistant à regrouper les pixels en petites régions cohérentes : les superpixels. L'utilisation d'une méthode de sur-segmentation produisant des superpixels est une étape clé de la méthode que nous proposons : elle réduit considérablement la complexité algorithmique et permet de traiter des images contenant plusieurs millions de pixels, tout en garantissant un temps interactif. La seconde contribution de ce travail est une évaluation des algorithmes permettant de grouper les pixels en superpixels, à partir d'un nouvel ensemble de données de référence que nous mettons à disposition et dont la particularité est de contenir des images de tailles différentes : de quelques milliers à plusieurs millions de pixels. Cette étude nous a également permis de concevoir et d'évaluer une nouvelle méthode de production de superpixels. / Image segmentation is one of the main research topics in image analysis. It is the task of researching a partition into regions, i.e., into sets of connected pixels, meeting a given uniformity criterion. The goal of image segmentation is to find regions corresponding to the objects or the object parts appearing in the image. The choice of what objects are relevant depends on the application context. Manually locating these objects is a tedious but quite simple task. Designing an automatic algorithm able to achieve the same result is, on the contrary, a difficult problem. Interactive segmentation methods are semi-automatic approaches where a user guide the search of a specific segmentation of an image by giving some indications. There are two kinds of methods : boundary-based and region-based interactive segmentation methods. Boundary-based methods extract a single object corresponding to a unique region without any holes. The user guides the method by selecting some boundary points of the object. The algorithm search for a curve linking all the points given by the user, following the boundary of the object and having some intrinsic properties (regular curves are encouraged). Region-based methods group the pixels of an image into sets, by maximizing the similarity of pixels inside each set and the dissimilarity between pixels belonging to different sets. Each set can be composed of one or several connected components and can contain holes. The user guides the method by drawing colored strokes, giving, for each set, some pixels belonging to it. If the majority of region-based methods extract a single object from the background, some algorithms, proposed during the last decade, are able to solve multi-class interactive segmentation problems, i.e., to extract more than two sets of pixels. The main contribution of this work is the design of a new multi-class interactive segmentation method. This algorithm is based on the minimization of a cost function that can be represented by a factor graph. It integrates a supervised learning classification method checking that the produced segmentation is consistent with the indications given by the user, a new regularization term, and a preprocessing step grouping pixels into small homogeneous regions called superpixels. The use of an over-segmentation method to produce these superpixels is a key step in the proposed interactive segmentation method : it significantly reduces the computational complexity and handles the segmentation of images containing several millions of pixels, by keeping the execution time small enough to ensure comfortable use of the method. The second contribution of our work is an evaluation of over-segmentation algorithms. We provide a new dataset, with images of different sizes with a majority of big images. This review has also allowed us to design a new over-segmentation algorithm and to evaluate it.
4

From interactive to semantic image segmentation

Gulshan, Varun January 2011 (has links)
This thesis investigates two well defined problems in image segmentation, viz. interactive and semantic image segmentation. Interactive segmentation involves power assisting a user in cutting out objects from an image, whereas semantic segmentation involves partitioning pixels in an image into object categories. We investigate various models and energy formulations for both these problems in this thesis. In order to improve the performance of interactive systems, low level texture features are introduced as a replacement for the more commonly used RGB features. To quantify the improvement obtained by using these texture features, two annotated datasets of images are introduced (one consisting of natural images, and the other consisting of camouflaged objects). A significant improvement in performance is observed when using texture features for the case of monochrome images and images containing camouflaged objects. We also explore adding mid-level cues such as shape constraints into interactive segmentation by introducing the idea of geodesic star convexity, which extends the existing notion of a star convexity prior in two important ways: (i) It allows for multiple star centres as opposed to single stars in the original prior and (ii) It generalises the shape constraint by allowing for Geodesic paths as opposed to Euclidean rays. Global minima of our energy function can be obtained subject to these new constraints. We also introduce Geodesic Forests, which exploit the structure of shortest paths in implementing the extended constraints. These extensions to star convexity allow us to use such constraints in a practical segmentation system. This system is evaluated by means of a “robot user” to measure the amount of interaction required in a precise way, and it is shown that having shape constraints reduces user effort significantly compared to existing interactive systems. We also introduce a new and harder dataset which augments the existing GrabCut dataset with more realistic images and ground truth taken from the PASCAL VOC segmentation challenge. In the latter part of the thesis, we bring in object category level information in order to make the interactive segmentation tasks easier, and move towards fully automated semantic segmentation. An algorithm to automatically segment humans from cluttered images given their bounding boxes is presented. A top down segmentation of the human is obtained using classifiers trained to predict segmentation masks from local HOG descriptors. These masks are then combined with bottom up image information in a local GrabCut like procedure. This algorithm is later completely automated to segment humans without requiring a bounding box, and is quantitatively compared with other semantic segmentation methods. We also introduce a novel way to acquire large quantities of segmented training data relatively effortlessly using the Kinect. In the final part of this work, we explore various semantic segmentation methods based on learning using bottom up super-pixelisations. Different methods of combining multiple super-pixelisations are discussed and quantitatively evaluated on two segmentation datasets. We observe that simple combinations of independently trained classifiers on single super-pixelisations perform almost as good as complex methods based on jointly learning across multiple super-pixelisations. We also explore CRF based formulations for semantic segmentation, and introduce novel visual words based object boundary description in the energy formulation. The object appearance and boundary parameters are trained jointly using structured output learning methods, and the benefit of adding pairwise terms is quantified on two different datasets.
5

Living in a dynamic world : semantic segmentation of large scale 3D environments

Miksik, Ondrej January 2017 (has links)
As we navigate the world, for example when driving a car from our home to the work place, we continuously perceive the 3D structure of our surroundings and intuitively recognise the objects we see. Such capabilities help us in our everyday lives and enable free and accurate movement even in completely unfamiliar places. We largely take these abilities for granted, but for robots, the task of understanding large outdoor scenes remains extremely challenging. In this thesis, I develop novel algorithms for (near) real-time dense 3D reconstruction and semantic segmentation of large-scale outdoor scenes from passive cameras. Motivated by "smart glasses" for partially sighted users, I show how such modeling can be integrated into an interactive augmented reality system which puts the user in the loop and allows her to physically interact with the world to learn personalized semantically segmented dense 3D models. In the next part, I show how sparse but very accurate 3D measurements can be incorporated directly into the dense depth estimation process and propose a probabilistic model for incremental dense scene reconstruction. To relax the assumption of a stereo camera, I address dense 3D reconstruction in its monocular form and show how the local model can be improved by joint optimization over depth and pose. The world around us is not stationary. However, reconstructing dynamically moving and potentially non-rigidly deforming texture-less objects typically require "contour correspondences" for shape-from-silhouettes. Hence, I propose a video segmentation model which encodes a single object instance as a closed curve, maintains correspondences across time and provide very accurate segmentation close to object boundaries. Finally, instead of evaluating the performance in an isolated setup (IoU scores) which does not measure the impact on decision-making, I show how semantic 3D reconstruction can be incorporated into standard Deep Q-learning to improve decision-making of agents navigating complex 3D environments.
6

Segmentation interactive d'images cardiaques dynamiques. / Interactive segmentation of dynamic cardiac images.

Bianchi, Kevin 09 December 2014 (has links)
La thèse porte sur la segmentation spatio-temporelle et interactive d'images cardiaquesdynamiques. Elle s'inscrit dans le projet ANR 3DSTRAIN du programme"Technologies pour la Santé et l'Autonomie" qui a pour objectif d'estimer de façoncomplète, dense et sur plusieurs modalités d'imagerie 3D+t (telles que l'imageriepar résonance magnétique (IRM), la tomographie par émission monophotonique(TEMP) et l'échocardiographie) l'indice de déformation du muscle cardiaque : lestrain. L'estimation du strain nécessite une étape de segmentation qui doit être laplus précise possible pour fournir une bonne évaluation de cet indice. Nos travauxse sont orientés sur deux axes principaux : (1) le développement d'un modèle desegmentation conforme à la morphologie du muscle cardiaque et (2) la possibilitéde corriger interactivement et intuitivement le résultat de la segmentation obtenuegrâce à ce modèle. / This thesis focuses on the spatio-temporal and interactive segmentation of dynamiccardiac images. It is a part of the ANR 3DSTRAIN project of program "Technologiesfor Health and Autonomy" which aims to estimate full, dense and on several3D+t imaging modalities (such as Magnetic Resonance Imaging (MRI), Single PhotonEmission Computed Tomography (SPECT) and echocardiography) the indexof deformation of the heart muscle : the strain. The strain estimation requires asegmentation step which must be as precise as possible to provide a good estimationof this index. Our work was focused on two main areas : (1) the development of asegmentation model conforms to the shape of the heart muscle and (2) the abilityto interactively and intuitively correct the segmentation's result obtained with thismodel.

Page generated in 0.1751 seconds