• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 32
  • 2
  • 1
  • Tagged with
  • 73
  • 51
  • 26
  • 20
  • 15
  • 13
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bewegungsstereo in Echtzeit zur Exploration und Lokalisation

Magin, Gunter. January 2000 (has links) (PDF)
München, Techn. Universiẗat, Diss., 2000.
2

Wittgenstein über das Aspektsehen

Liu, Chang January 2007 (has links)
Zugl.: Bielefeld, Univ., Diss., 2007
3

Parallele Bilderkennung mit hierarchischen Formprimitiven auf Transputernetzen /

Schwolle, Ursula. January 1994 (has links)
Universiẗat, Diss.--Paderborn, 1994.
4

On the perceptual identity of depth vision in the owl

Willigen, Robert Frans van der. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2000--Aachen.
5

3D time of flight distance measurement with custom solid state image sensors in CMOS, CCD technology

Lange, Robert. January 2000 (has links) (PDF)
Siegen, University, Diss., 2000.
6

Free formed surface mirrors in computer vision systems

Würz-Wessel, Alexander. January 2003 (has links) (PDF)
Tübingen, University, Diss., 2003.
7

Experimentelle Bestimmung der "Verrechnungs"-Zeiten beim Stereosehen anhand der verzögert wahrgenommenen Tiefenumkehr von bewegten, teilweise verdeckten Objekten / Delayed Stereopsis Illusion

Rosenzweig, Rainer January 2002 (has links) (PDF)
Wie viel Zeit benötigt unser 3D-Sehen? Bei pseudoskopischer Betrachtung eines undurchsichtigen Objekts („Zweig“), das räumlich vor einer zufallsgemusterten Fläche („Hecke“) liegt, erscheint das Objekt in einem Ausschnitt hinter dieser Fläche. Bewegt sich das Muster der Hecke, das räumlich vor diesem Ausschnitt wahrgenommen wird, vertikal, so nimmt man an der in Bewegungsrichtung vorderen Kante des Rechtecks eine illusionäre „Lücke“ wahr, in der die Tiefenposition des bewegten Musters undefiniert ist. Dieses Phänomen wird als Delayed Stereopsis Illusion (DSI) bezeichnet. Die „DSI-Lücke“ trägt das Muster der bewegten Fläche, ihre räumliche Tiefe wird aber irgendwo zwischen Objekt und Flächenebene wahrgenommen. Analog zu Bela Julesz´ topologischen „Niemandsländern“ an den beiden vertikalen Rändern des Quadrates, wird diese DSI-Lücke als „rechen“-zeitbedingtes Niemandsland bezeichnet. Denn anhand der Breite dieser Lücke kann man die 3D-Ermittlungszeit bestimmen, die das Gehirn für die Bestimmung der Tiefenposition des aus dem „Nichts“ auftauchenden Musters benötigt. Messdaten wurden psychophysisch mit einem Computer-generierten Modellsystem gewonnen. In drei Experimentalserien E1-E3 haben insgesamt 14 Versuchspersonen die wahrgenommene Breite der DSI-Lücke unter definierten Versuchsbedingungen mit zwei unterschiedlichen Messmethoden angegeben. Dabei wurden insgesamt 881 Einzelmessungen durchgeführt, davon 212 Einzelmessungen in E1, 384 in E2 und 285 in E3. Die Messdaten von E1 und E2 ließen anfangs vermuten, dass es beim 3D-Sehen zwei verschieden schnelle Verarbeitungswege für langsame und schnelle Bewegungen gibt. Diese Annahme wurde aber durch die Ergebnisse von E3 widerlegt: Die 3D-Ermittlungszeit hängt nicht von der Geschwindigkeit des bewegten Musters ab, sondern hat einen konstanten Wert, der – von Person zu Person unterschiedlich – zwischen 50 und 80 ms liegt. Lerneffekte und Mustereigenschaften wie z.B. Raumfrequenzen haben keinen messbaren Einfluss auf die Breite der DSI-Lücke und damit auf die 3D-Ermittlungszeit. Unter Berücksichtigung der wahrgenommenen Ortsverschiebung bewegter Muster nach de Valois und de Valois (1991) wird eine entsprechende Korrektur der aus den DSI-Lücken erschlossenen Zeiten diskutiert. In jedem Fall aber ist auch die korrigierte 3D-Ermittlungszeit wesentlich länger als die Mindestzeit von 17 ms, die nach Julesz zur Wahrnehmung dynamischer Random-dot-Stereogramme nötig ist: 17 ms sind viel zu kurz, um die Tiefenpositionen in jedem Einzelbild zu ermitteln. Unser 3D-System scheint in diesem Fall also nur zu prüfen, dass sich an den Tiefenpositionen nichts geändert hat, und hält so lange die Tiefenwahrnehmung des schwebenden Objekts konstant. [Die Untersuchung wurde von der Deutschen Forschungsgemeinschaft unterstützt.] / How much time does our visual system need to perform stereopsis? Viewed pseudoscopically, an opaque square floating above a random-dot pattern appears as a rectangular cut-out. When the pattern moves vertically upwards, an illusory gap with undefined depth position is perceived at the upper edge of the square. This phenomenon is called Delayed Stereopsis Illusion (DSI). The „DSI-gap” carries the pattern of the moving plane, its spatial depth, however, is perceived somewhere between the moving pattern and the cut-out. In analogy with Julesz's „noman's- land“ we called this DSI-gap „trailing-edge no-man's-land“. Its width indicates the 3-D computation time needed to determine spatial depth of the pattern, which virtually appears „from nowhere“. Data were gathered psychophysically with a computer generated model system. In three experimental series E1-E3 14 subjects marked the width of the DSI-gap under various welldefined conditions with two different methods. A total of 881 single measurements were performed, 212 of them in E1, 384 in E2 and 285 in E3. The results indicate interindividually different 3-D computation times between 50 and 80 ms. Learning, and pattern parameters like spatial frequency did not significantly influence the perceived width of the DSI-gap. Regarding the perceived shift of moving patterns according to de Valois and de Valois (1991), an adequate correction of the delays concluded from the measured DSI gaps is discussed. In any case, the minimum presentation time of 17 ms, at which Julesz´ dynamic random-dot-stereograms are just recognizable, is much too short to determine the position in depth in each single frame. The 3-D system rather seems to check that the depth situation has not changed, and maintains the percept of the floating square. [Supported by the Deutsche Forschungsgemeinschaft.]
8

Accurate visual metrology from single and multiple uncalibrated images /

Criminisi, Antonio. January 2001 (has links) (PDF)
Univ. of Oxford, Diss.--Oxford, 2000. / Literaturverz. S. [175] - 181.
9

Aufbau einer bildgestützten Vermessungsanlage zur Koordination eines Robotergreifarms im Rahmen der Automobilproduktion

Schenk, Wolfram. January 1998 (has links)
Stuttgart, Univ., Fakultät Informatik, Diplomarb., 1998.
10

Novelty choice in Drosophila melanogaster / Neuigkeitseffekt im Mustersehen von Drosophila melanogaster

Solanki, Narendra January 2013 (has links) (PDF)
This study explores novelty choice, a behavioral paradigm for the investigation of visual pattern recognition and learning of the fly Drosophila melanogaster in the flight simulator. Pattern recognition in novelty choice differs significantly from pattern recognition studied by heat conditioning, although both paradigms use the same test. Out of the four pattern parameters that the flies can learn in heat conditioning, novelty choice can be shown for height (horizontal bars differing in height), size and vertical compactness but not for oblique bars oriented at +/- 45°. Upright and inverted Ts [differing in their centers of gravity (CsOG) by 13°] that have been extensively used for heat conditioning experiments, do not elicit novelty choice. In contrast, horizontal bars differing in their CsOG by 13° do elicit novelty choice; so do the Ts after increasing their CsOG difference from 13° to 23°. This indicates that in the Ts the heights of the CsOG are not the only pattern parameters that matter for the novelty choice behavior. The novelty choice and heat conditioning paradigms are further differentiated using the gene rutabaga (rut) coding for a type 1 adenylyl cyclase. This protein had been shown to be involved in memory formation in the heat conditioning paradigm. Novelty choice is not affected by mutations in the rut gene. This is in line with the finding that dopamine, which in olfactory learning is known to regulate Rutabaga via the dopamine receptor Dumb in the mushroom bodies, is dispensable for novelty choice. It is concluded that in novelty choice the Rut cAMP pathway is not involved. Novelty choice requires short term working memory, as has been described in spatial orientation during locomotion. The protein S6KII that has been shown to be involved in visual orientation memory in walking flies is found here to be also required for novelty choice. As in heat conditioning the central complex plays a major role in novelty choice. The S6KII mutant phenotype for height can be rescued in some subsets of the ring neurons of the ellipsoid body. In addition the finding that the ellipsoid body mutants ebo678 and eboKS263 also show a mutant phenotype for height confirm the importance of ellipsoid body for height novelty choice. Interestingly some neurons in the F1 layer of the fan-shaped body are necessary for height novelty choice. Furthermore, different novelty choice phenotypes for different pattern parameters are found with and without mushroom bodies. Mushroom bodies are required in novelty choice for size but they are dispensable for height and vertical compactness. This special circuit requirement for the size parameter in novelty choice is found using various means of interference with mushroom body function during development or adulthood. / Diese Studie untersucht Novelty Choice, ein Verhaltens-Paradigma für die Untersuchung der visuellen Mustererkennung und des Lernens der Fliege Drosophila melanogaster im Flugsimulator. Mustererkennung in Novelty Choice unterscheidet sich deutlich von Mustererkennung durch heat conditioning, obwohl beide Paradigmen den gleichen Test verwenden. Von den vier Muster-Parametern, die die Fliegen im heat conditioning für die Musterunterscheidung lernen kann, lernt sie in Novelty Choice nur die Höhe (horizontale Balken in unterschiedlicher Höhe), Größe und vertikale Kompaktheit, nicht dagegen die schrägen Balken im Winkel von +/- 45°. Aufrechte und umgekehrte Ts [hinsichtlich ihrer Schwerpunkte (CsOG) um 13° voneinander verschieden], die bisher weitgehend für heat conditioning Experimente verwendet werden, lösen kein Novelty Choice aus. Im Gegensatz dazu reagiert die Fliege auf horizontale Balken, die sich in ihren CsOG um 13° unterscheiden, mit Novelty Choice. Auch die Ts lösen Novelty Choice aus, wenn ihre CsOG-Differenzen von 13° auf 23° erhöht wird. Dies deutet darauf hin, dass in den Ts die Höhen der CsOG nicht die einzigen relevanten Musterparameter für Novelty Choice Verhalten sind. Die Novelty Choice und heat conditioning Paradigmen unterscheiden sich darüber hinaus in der Rolle des Gens rutabaga (rut), das eine Typ-1-Adenylylcyclase codiert. Für dieses Protein wurde gezeigt, dass es bei der Gedächtnisbildung in der heat conditioning beteiligt ist. Novelty Choice wird nicht durch Mutationen im Gen rut beeinflusst. Dies steht im Einklang mit der Erkenntnis, dass Dopamin, das bei olfaktorischem Lernen bekanntermaßen Rutabaga über den Dopamin-Rezeptor Dumb in den Pilzkörpern reguliert, entbehrlich für die Novelty Choice ist. Die Schlussfolgerung ist, dass der Rut cAMP Signalweg bei der Novelty Choice nicht beteiligt ist. Novelty choice erfordert kurzfristigen Arbeitsgedächtnisspeicher, wie in der räumlichen Orientierung während der Fortbewegung beschrieben wurde. Das Protein S6KII, für welches gezeigt wurde, dass es am visuellen Orientierungsgedächtnis laufender Fliegen beteiligt ist, wird hier als ebenso notwendig für Novelty Choice entdeckt. Wie in heat conditioning spielt der Zentralkomplex eine wichtige Rolle in Novelty Choice. Der S6KII Mutantenphänotyp für Höhe kann in einigen Untergruppen der Ring-Neuronen des Ellipsoidkörpers gerettet werden. Weiterhin kann festgestellt werden, dass die Ellipsoidkörper-Mutanten ebo678 und eboKS263, welche ebenfalls einen Mutantenphänotyp für Höhe zeigen, die Bedeutung des Ellipsoidkörpers für die Novelty Choice hinsichtlich des Höheparameters bestätigen. Interessanterweise sind einige Neuronen in der F1-Schicht des Fächerförmigen Körpers notwendig für Novelty Choice (für Höhe). Darüber hinaus werden mit und ohne Pilzkörper unterschiedliche Phänotypen für verschiedene Musterparameter bei Novelty Choice gefunden. Die Pilzkörper sind in der Novelty Choice für Größe erforderlich, aber für Höhe und vertikale Kompaktheit sind sie entbehrlich. Diese spezielle Schaltungsvoraussetzung für den Größenparameter in Novelty Choice wird unter Verwendung verschiedener Mittel der Interferenz mit Pilzkörperfunktionen während der Entwicklung oder im Erwachsenenalter gefunden.

Page generated in 0.0226 seconds