• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 5
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 23
  • 16
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Woman in the work and thought of Ina Seidel

McKittrick, Mary, January 1937 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1937. / Typescript. Includes abstract and vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves xxv-xxviii).
2

Rotations in the Plane and Prolog.

Csenki, Attila January 2007 (has links)
No / Rotation is a well-known operation on lists. We define its two-dimensional analogue and discuss its implementation in Prolog using difference lists. An application to the iterative solution of a system of linear equations by the Gauss¿Seidel method is given.
3

Newton-Picard Gauss-Seidel

Simonis, Joseph P. January 2004 (has links) (PDF)
Dissertation (Ph.D.)-- Worcester Polytechnic Institute. / Keywords: Newton; Picard; periodic solutions; dynamical systems. Includes bibliographical references (p.10-11).
4

Efficient Numeric Computation of a Phase Diagram in Biased Diffusion of Two Species

Parks, Michael Lawrence 23 May 2000 (has links)
A lattice gas with equal numbers of oppositely charged particles, diffusing under the influence of a uniform electric field and an excluded volume condition undergoes an order-disorder phase transition, controlled by the particle density and the field strength. This transition may be continuous (second order) or continuous (first order). Results from previous discrete simulations are shown, and a theoretical continuum model is developed. As this is a nonequilibrium system, there is no associated free energy to determine the location of a first order transition. Instead, the model equations for this system are evolved in time numerically, and the locus of this transition is determined via the presence of a stable state with coexisting regions of order and disorder. The Crank-Nicholson, nonlinear Gauss-Seidel, and GMRES algorithms used to solve the model equations are discussed. Performance enhancements and limits on convergence are considered. / Master of Science
5

Comparison of Power Flow Algorithms for inclusion in On-line Power Systems Operation Tools

Bokka, Naveen 17 December 2010 (has links)
The goal of this thesis is to develop a new, fast, adaptive load flow algorithm that "automatically alternates" numerical methods including Newton-Raphson method, Gauss-Seidel method and Gauss method for a load flow run to achieve less run time. Unlike the proposed method, the traditional load flow analysis uses only one numerical method at a time. This adaptive algorithm performs all the computation for finding the bus voltage angles and magnitudes, real and reactive powers for the given generation and load values, while keeping track of the proximity to convergence of a solution. This work focuses on finding the algorithm that uses multiple numerical techniques, rather than investigating programming techniques and programming languages. The convergence time is compared with those from using each of the numerical techniques. The proposed method is implemented on the IEEE 39-bus system with different contingencies and the solutions obtained are verified with PowerWorld Simulator, a commercial software for load flow analysis.
6

A proof of Seidel\'s conjectures on the volume of ideal tetrahedra in hyperbolic 3-space / Uma demonstração das conjecturas de Seidel sobre o volume de tetraedros ideais no 3-espaço hiperbólico

Cussy, Omar Chavez 27 June 2017 (has links)
We prove a couple of conjectures raised by J. J. Seidel in On the volume of a hyperbolic simplex, Stud. Sci. Math. Hung. (21, 243249, 1986). These conjectures concern the volume of ideal hyperbolic tetrahedra in hyperbolic 3-space and are related to the following general framework. Since explicit formulae for geometric quantities in hyperbolic space (distance, area, volume, etc.) typically involve sophisticated transcendental functions, it is desirable (and quite useful in practice) to expresses these geometric quantities as monotonic functions of algebraic maps. Seidels Speculation 1 says that the volume of an ideal tetrahedron in hyperbolic 3-space depends only on the determinant and permanent of the doubly stochastic Gram matrix of its vertices; Speculation 4 claims that the mentioned volume is monotone in both the determinant and permanent. We are able to give affirmative answers to Speculations 1 and 4 by parameterizing the classifying space of (labelled) ideal tetrahedra in a suitable way. / Provamos duas conjecturas apresentadas por J. J. Seidel em On the volume of a hyperbolic simplex, Stud. Sci. Math. Hung. (21, 243249, 1986). Estas conjecturas referem ao volume de tetraedros ideais no 3-espaço hiperbólico e estão relacionadas com o seguinte quadro geral. Como fórmulas explícitas para grandezas geométricas no espaço hiperbólico (distancia, área, volume, etc.) tipicamente envolvem funções transcendentais sofisticadas, é desejável (e, na prática, bastante útil) expressar tais grandezas geométricas como aplicações monótonas de mapas algébricos. A Especulação 1 de Seidel diz que o volume de um tetraedro ideal no 3-espaço hiperbólico depende apenas do determinante e do permanente da matriz de Gram duplamente estocástica G de seus vértices; a Especulação 4 afirma que o referido volume é monótono tanto no determinante quanto no permanente de G. Damos respostas afirmativas ás Especulações 1 e 4 ao parametrizar o espaço classificador de tetraedros ideais (marcados) de maneira adequada.
7

A proof of Seidel\'s conjectures on the volume of ideal tetrahedra in hyperbolic 3-space / Uma demonstração das conjecturas de Seidel sobre o volume de tetraedros ideais no 3-espaço hiperbólico

Omar Chavez Cussy 27 June 2017 (has links)
We prove a couple of conjectures raised by J. J. Seidel in On the volume of a hyperbolic simplex, Stud. Sci. Math. Hung. (21, 243249, 1986). These conjectures concern the volume of ideal hyperbolic tetrahedra in hyperbolic 3-space and are related to the following general framework. Since explicit formulae for geometric quantities in hyperbolic space (distance, area, volume, etc.) typically involve sophisticated transcendental functions, it is desirable (and quite useful in practice) to expresses these geometric quantities as monotonic functions of algebraic maps. Seidels Speculation 1 says that the volume of an ideal tetrahedron in hyperbolic 3-space depends only on the determinant and permanent of the doubly stochastic Gram matrix of its vertices; Speculation 4 claims that the mentioned volume is monotone in both the determinant and permanent. We are able to give affirmative answers to Speculations 1 and 4 by parameterizing the classifying space of (labelled) ideal tetrahedra in a suitable way. / Provamos duas conjecturas apresentadas por J. J. Seidel em On the volume of a hyperbolic simplex, Stud. Sci. Math. Hung. (21, 243249, 1986). Estas conjecturas referem ao volume de tetraedros ideais no 3-espaço hiperbólico e estão relacionadas com o seguinte quadro geral. Como fórmulas explícitas para grandezas geométricas no espaço hiperbólico (distancia, área, volume, etc.) tipicamente envolvem funções transcendentais sofisticadas, é desejável (e, na prática, bastante útil) expressar tais grandezas geométricas como aplicações monótonas de mapas algébricos. A Especulação 1 de Seidel diz que o volume de um tetraedro ideal no 3-espaço hiperbólico depende apenas do determinante e do permanente da matriz de Gram duplamente estocástica G de seus vértices; a Especulação 4 afirma que o referido volume é monótono tanto no determinante quanto no permanente de G. Damos respostas afirmativas ás Especulações 1 e 4 ao parametrizar o espaço classificador de tetraedros ideais (marcados) de maneira adequada.
8

Newton-Picard Gauss-Seidel

Simonis, Joseph P. 13 May 2005 (has links)
Newton-Picard methods are iterative methods that work well for computing roots of nonlinear equations within a continuation framework. This project presents one of these methods and includes the results of a computation involving the Brusselator problem performed by an implementation of the method. This work was done in collaboration with Andrew Salinger at Sandia National Laboratories.
9

Modélisation de surfaces à l'aide de fonctions splines :

Tazeroualti, Mahammed 26 February 1993 (has links) (PDF)
Ce travail se décompose en trois parties distinctes. Dans la première partie, on introduit un algorithme du type Gauss-Seidel pour la minimisation de fonctionnelles symétriques semi-définies positives. La convergence de cet algorithme est démontrée. En application, on donne deux méthodes de lissage de surfaces. Ces méthodes sont basées sur l'idée de ramener un probleme de lissage a deux dimensions a la resolution d'une suite de problèmes a une dimension faciles a résoudre. Pour cela on utilise l'opération d'inf-convolution spline. Dans la deuxième partie, on introduit une nouvelle methode pour la conception d'un verre progressif. Ce verre est représente par une surface suffisamment régulière, a laquelle on impose des conditions sur ses courbures principales dans certaines zones (zone de vision de loin et zone de vision de pres), et des conditions sur ses directions principales de courbure dans d'autres zones (zone nasale et zone temporale). La surface est écrite sous forme de produit tensoriel de b-splines de degré quatre. Pour la calculer, on est amené a minimiser un opérateur non quadratique. Cette minimisation est alors effectuée par un procédé itératif dont on a teste numériquement la convergence rapide
10

Expérimentation des méthodes itératives de Newton et Gauss-Seidel en variables discrètes

Jiang, Ze Qu 31 March 1982 (has links) (PDF)
.

Page generated in 0.0395 seconds