• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cycle-Free Twisted Face-Pairing 3-Manifolds

Gartland, Christopher John 29 May 2014 (has links)
In 2-dimensional topology, quotients of polygons by edge-pairings provide a rich source of examples of closed, connected, orientable surfaces. In fact, they provide all such examples. The 3-dimensional analogue of an edge-pairing of a polygon is a face-pairing of a faceted 3-ball. Unfortunately, quotients of faceted 3-balls by face-pairings rarely provide us with examples of 3-manifolds due to singularities that arise at the vertices. However, any face-pairing of a faceted 3-ball may be slighted modified so that its quotient is a genuine manifold, i.e. free of singularities. The modified face-pairing is called a twisted face-pairing. It is natural to ask which closed, connected, orientable 3-manifolds may be obtained as quotients of twisted face-pairings. In this paper, we focus on a special class of face-pairings called cycle-free twisted face-pairings and give description of their quotient spaces in terms of integer weighted graphs. We use this description to prove that most spherical 3-manifolds can be obtained as quotients of cycle-free twisted face-pairings, but the Poincaré homology 3-sphere cannot. / Master of Science
2

Quasi-isométries, groupes de surfaces et orbifolds fibrés de Seifert

Maillot, Sylvain 20 December 2000 (has links) (PDF)
Le résultat principal est une caractérisation homotopique des orbifolds de dimension 3 qui sont fibrés de Seifert : si O est un orbifold de dimension 3 fermé, orientable et petit dont le groupe fondamental admet un sous-groupe infini cyclique normal, alors O est de Seifert. Ce théorème généralise un résultat de Scott, Mess, Tukia, Gabai et Casson-Jungreis pour les variétés. Il repose sur une caractérisation des groupes de surfaces virtuels comme groupes quasi-isométriques à un plan riemannien complet. D'autres résultats sur les quasi-isométries entre groupes et surfaces sont obtenus.

Page generated in 0.0283 seconds