Spelling suggestions: "subject:"eismic Active deformation"" "subject:"eismic Active eformation""
1 |
Earthquake Sources and Hazard in northern Central America / Zonas y Amenaza Sísmica en el norte de America CentralCáceres Calix, Diego José January 2003 (has links)
Northern Central America is a tectonically complex zone defined by its borders with Cocos and North America plates. The Middle America subduction zone and the strike-slip motion along the North America-Caribbean plate boundary, in that order, control most of its deformation. The interaction between the different elements of the studied area is evident from the high seismicity in the region, especially along plate boundaries. Also in the interior of the region, seismicity shows that deformation takes place, though in lesser degree. In a time window of 30 years, three earthquakes with moment magnitude larger than 7 struck northern Central America evincing the need to estimate the seismic hazard for the zone. To tackle the problem, we compiled a catalogue of hypocenters commencing in 1964, defined seismogenic sources and described the evolution of earthquake activity through a Poisson model. Probabilistic seismic hazard (PSH) calculations for the next 50 years were performed. The highest estimate of seismic hazard was obtained for the zone adjacent to the subduction zone. Because of the fundamental importance of demarcating seismogenic sources in the PSH analysis, i.e. defining the seismotectonic model, we extended the catalogue to cover 102 years for the whole northern Central America. We have studied the North America-Caribbean plate boundary in order to refine the fault representation. Different techniques were used, like that of body-waveform modeling, allowing us to limit the extent of depth of faulting to 20 km. The seismic moment tensor was used to estimate the deformation velocities on known tectonic structures, including those of the Honduras depression and borderland faults. Finally, we made use of the Coulomb stress criterion to determine the relation between earthquake occurrence and static stress changes following major earthquakes.
|
2 |
Earthquake Sources and Hazard in northern Central America / Zonas y Amenaza Sísmica en el norte de America CentralCáceres Calix, Diego José January 2003 (has links)
<p>Northern Central America is a tectonically complex zone defined by its borders with Cocos and North America plates. The Middle America subduction zone and the strike-slip motion along the North America-Caribbean plate boundary, in that order, control most of its deformation. The interaction between the different elements of the studied area is evident from the high seismicity in the region, especially along plate boundaries. Also in the interior of the region, seismicity shows that deformation takes place, though in lesser degree. In a time window of 30 years, three earthquakes with moment magnitude larger than 7 struck northern Central America evincing the need to estimate the seismic hazard for the zone. To tackle the problem, we compiled a catalogue of hypocenters commencing in 1964, defined seismogenic sources and described the evolution of earthquake activity through a Poisson model. Probabilistic seismic hazard (PSH) calculations for the next 50 years were performed. The highest estimate of seismic hazard was obtained for the zone adjacent to the subduction zone. Because of the fundamental importance of demarcating seismogenic sources in the PSH analysis, i.e. defining the seismotectonic model, we extended the catalogue to cover 102 years for the whole northern Central America. We have studied the North America-Caribbean plate boundary in order to refine the fault representation. Different techniques were used, like that of body-waveform modeling, allowing us to limit the extent of depth of faulting to 20 km. The seismic moment tensor was used to estimate the deformation velocities on known tectonic structures, including those of the Honduras depression and borderland faults. Finally, we made use of the Coulomb stress criterion to determine the relation between earthquake occurrence and static stress changes following major earthquakes.</p>
|
Page generated in 0.1255 seconds