• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transient seismic velocities beneath active volcanoes

Cody Adam Kupres (18418983) 22 April 2024 (has links)
<p dir="ltr">Studying changes in seismic velocities beneath two separate volcanic systems in the Aleutian arc. Focusing on eruptive behavior, this research delineates subsurface changes through the lens of changes in seismic velocity.</p>
2

Design and characterization of a MEMS-based rotation sensor for seismic exploration / Conception et caractérisation d'un capteur de rotation MEMS pour l'exploration sismique

Projetti, Maxime 24 March 2014 (has links)
Lors de la prospection sismique, un réseau de capteurs, utilisant principalement des géophones, est déployé à la surface libre afin d'enregistrer les ondes sismiques provenant du sous-sol. Cependant, l'énergie captée par ces géophones est largement dominée par les ondes de surface ou ondes de Rayleigh produites par la source. Étant donné leur nature, ces ondes de surface ne contiennent aucune information sur la composition des couches géologiques profondes. De ce fait, il est nécessaire d'employer un réseau très fin de capteurs dans le but de caractériser précisément ces composantes puis de les filtrer par des techniques de traitement du signal. Toutefois, les coûts engendrés nécessitent de nouvelles méthodes d'acquisition des ondes sismiques, employant moins de capteurs et permettant d'élargir le pas du réseau. Une telle technique a été mise en évidence, moyennant une mesure précise des rotations de la surface libre. La piste explorée dans ce manuscrit est l'utilisation d'un capteur MEMS haute performance pour mesurer les rotations de la surface libre, avec un coût, un poids et une consommation électrique minimaux. Plus particulièrement, le choix s'est porté sur la réalisation d'un accéléromètre angulaire, mesurant la rotation d'entrainement de son référentiel. La conception du capteur MEMS proposé utilise une technique de mesure différentielle de capacités et un contrôle en boucle fermée reposant sur la modulation ΣΔ. Un important travail de modélisation et de simulation a permis la fabrication de plusieurs prototypes qui ont ensuite été caractérisés. Une résolution fondamentale de 3 mrad.s-2 RMS dans une bande de fréquences comprises entre 60 Hz et 200 Hz a ainsi été obtenue. Les performances mesurées surpassent de loin celles d'autres accéléromètres angulaires de la littérature. Finalement, des analyses comparatives avec d'autres instruments de mesure ont permis de conclure sur la faisabilité de notre solution pour la prospection sismique. / In seismic exploration, most of the signal acquired by point-receiver geophones is dominated by surface waves or ground rolls. Because they propagate in the near surface, ground rolls do not contain any information on deeper targets. Thus, short spacing between receivers is required so that this noise component can be accurately characterized and removed by digital filtering. However, considering the cost of seismic exploration ventures, new acquisition techniques using fewer point receivers and larger spacing have to be developed. Such a technique is briefly introduced in this dissertation, requiring accurate measurements of ground rotations at the free surface with minimum cost, weight and power consumption. To address this need, the thesis proposes a high-performance rotation sensor based on MEMS technology. Unlike vibrating gyroscopes, sensitive to rotation rates through Coriolis effect, the solution developed is an angular accelerometer designed for differential capacitance measurements. A feedback controller is also implemented utilizing an oversampled ΣΔ -modulator to increase dynamic performances of the system. Thorough analytical designs along with simulations are challenged by fabricated prototypes measurements to achieve a high-sensitivity, high-resolution device. An experimental resolution of 3 mrad.s-2 RMS in the frequency band 60 Hz - 200 Hz is then obtained, which is far better than other micromachined angular accelerometers from literature. Moreover, comparison analyses are performed with specific instruments used for rotational seismology to conclude on the feasibility of a MEMS-based rotation sensor for seismic exploration.
3

Theory Meets Terrain: Advancing the Alpine Fault Insights with Seismic Anisotropy Inversion

Oumeng Zhang (18333576) 10 April 2024 (has links)
<p dir="ltr">The Alpine Fault, located in the South Island, New Zealand, is a subject of intense geological study due to its potential to trigger large earthquakes. It encompasses a complex system with the interplay of mechanics, thermodynamics, and fluid. Gaining insights into these systems not only enhances our understanding of the fault but also holds the potential to guide risk mitigation efforts.</p><p dir="ltr">The damage extent and fracture networks within the metamorphic rock mass adjacent to the fault can be effectively characterized by seismic anisotropy, an elastic property of rock, where seismic waves travel at different speeds with variation directions. This thesis presents a comprehensive exploration of seismic anisotropy in the hanging wall immediately adjacent to the principal slip zone of the Alpine Fault in New Zealand. Leveraging the borehole seismic data from a unique scientific drilling project and advanced numerical modeling techniques, the ultimate goal is to invert and parameterize the bulk seismic anisotropy.</p><p dir="ltr">Motivated by these challenges, the thesis undertakes several key initiatives: The first effort focuses on gaining a comprehensive understanding of an innovative method for seismic measurement: Distributed Acoustic Sensing (DAS) – examining its operational principles, factors influencing observed wavelets, and how it contrasts with traditional point sensors for accurate interpretation. Subsequently, the research introduces the implementation of an open-source seismic wave solver designed for modeling elastic wave propagation in complicated anisotropic media. This solver is further optimized for computational efficiency with its performance rigorously benchmarked.</p><p dir="ltr">With this preparedness, the inversion is further facilitated by high-performance computing (HPC) and a deep-learning algorithm specifically designed for automatically picking transit times. The inverted bulk elastic constants, compared to the intact rock, reveal 28% to 35% reductions in qP-wave velocity, characterizing the damage due to mesoscale fracture. Further analysis sheds light on the existence of orthogonal fracture sets and an intricate geometrical arrangement that agree with the previous borehole image log. This represents an advancement in our ability to characterize and understand the geologic processes with seismic anisotropy.</p>
4

Preliminary investigation of the nature of hydrocarbon migration and entrapment

Bai, Jianyong 30 September 2004 (has links)
Numerical simulations indicate that hydrocarbon migration and entrapment in stacked fault-bounded reservoirs are mainly affected by the following factors: charge time, faults, pressure and geological structures. The charge time for commercial hydrocarbon accumulation is much longer in oil-water systems than in oil-gas-water systems. Faults are classified into charging faults and 'back doors' faults other than charging faults in stacked fault-bounded reservoirs. The lower the displacement pressure of a fault, the higher its updip oil transportation ability. The downdip oil transportation ability of a fault is usually low and cannot cause commercial downdip oil accumulation. Back doors affect both hydrocarbon percent charge and hydrocarbon migration pathways. Updip back doors improve updip oil charge. The lower the displacement pressure of an updip back door, the more efficient the updip oil charge before 3,000 years. Back doors whose displacement pressure is equal to or higher than 28.76 psi are effective in sealing faults in oil-water systems. On the contrary, only sealing faults result in commercial gas accumulations in stacked fault-compartmentalized reservoirs. Otherwise gas is found over oil. Downdip back doors generally have few effects on downdip hydrocarbon charge. Geopressure enhances the updip oil transportation of a fault and improves the positive effects of updip back doors during updip oil charge. Geopressure and updip back doors result in more efficient updip oil charge. A physical barrier is not necessarily a barrier to oil migration with the aid of geopressure and updip back doors. The chance for hydrocarbon charge into reservoirs along growth faults is not equal. Any one of the above controlling factors can change the patterns of hydrocarbon charge and distribution in such complex geological structures. Generally, lower reservoirs and updip reservoirs are favored. Reservoirs along low-permeability charging faults may be bypassed. Gas can only charge the updip reservoirs. Both updip and downdip back doors can facilitate oil penetrating a barrier fault to charge reservoirs offset by the barrier fault. Interreservoir migration among stacked fault-compartmentalized reservoirs is an important mechanism for hydrocarbon accumulation and trap identification. The interreservoir migration is a very slow process, even though the displacement pressures of bounding faults may be very low.
5

Urban Seismic Event Detection: A Non-Invasive Deep Learning Approach

Parth Sagar Hasabnis (18424092) 23 April 2024 (has links)
<p dir="ltr">As cameras increasingly populate urban environments for surveillance, the threat of data breaches and losses escalates as well. The rapid advancements in generative Artificial Intelligence have greatly simplified the replication of individuals’ appearances from video footage. This capability poses a grave risk as malicious entities can exploit it for various nefarious purposes, including identity theft and tracking individuals’ daily activities to facilitate theft or burglary.</p><p dir="ltr">To reduce reliance on video surveillance systems, this study introduces Urban Seismic Event Detection (USED), a deep learning-based technique aimed at extracting information about urban seismic events. Our approach involves synthesizing training data through a small batch of manually labelled field data. Additionally, we explore the utilization of unlabeled field data in training through semi-supervised learning, with the implementation of a mean-teacher approach. We also introduce pre-processing and post-processing techniques tailored to seismic data. Subsequently, we evaluate the trained models using synthetic, real, and unlabeled data and compare the results with recent statistical methods. Finally, we discuss the insights gained and the limitations encountered in our approach, while also proposing potential avenues for future research.</p>

Page generated in 0.0825 seconds