Spelling suggestions: "subject:"eismic simulation"" "subject:"zeismic simulation""
1 |
3D Time-lapse Analysis of Seismic Reflection Data to Characterize the Reservoir at the Ketzin CO2 Storage Pilot SiteHuang, Fei January 2016 (has links)
3D time-lapse seismics, also known as 4D seismics, have great potential for monitoring the migration of CO2 at underground storage sites. This thesis focuses on time-lapse analysis of 3D seismic reflection data acquired at the Ketzin CO2 geological storage site in order to improve understanding of the reservoir and how CO2 migrates within it. Four 3D seismic surveys have been acquired to date at the site, one baseline survey in 2005 prior to injection, two repeat surveys in 2009 and 2012 during the injection period, and one post-injection survey in 2015. To accurately simulate time-lapse seismic signatures in the subsurface, detailed 3D seismic property models for the baseline and repeat surveys were constructed by integrating borehole data and the 3D seismic data. Pseudo-boreholes between and beyond well control were built. A zero-offset convolution seismic modeling approach was used to generate synthetic time-lapse seismograms. This allowed simulations to be performed quickly and limited the introduction of artifacts in the seismic responses. Conventional seismic data have two limitations, uncertainty in detecting the CO2 plume in the reservoir and limited temporal resolution. In order to overcome these limitations, complex spectral decomposition was applied to the 3D time-lapse seismic data. Monochromatic wavelet phase and reflectivity amplitude components were decomposed from the 3D time-lapse seismic data. Wavelet phase anomalies associated with the CO2 plume were observed in the time-lapse data and verified by a series of seismic modeling studies. Tuning frequencies were determined from the balanced amplitude spectra in an attempt to discriminate between pressure effects and CO2 saturation. Quantitative assessment of the reservoir thickness and CO2 mass were performed. Time-lapse analysis on the post-injection survey was carried out and the results showed a consistent tendency with the previous repeat surveys in the CO2 migration, but with a decrease in the size of the amplitude anomaly. No systematic anomalies above the caprock were detected. Analysis of the signal to noise ratio and seismic simulations using the detailed 3D property models were performed to explain the observations. Estimation of the CO2 mass and uncertainties in it were investigated using two different approaches based on different velocity-saturation models.
|
2 |
Multi-hazard analysis of steel structures subjected to fire following earthquakeCovi, Patrick 30 July 2021 (has links)
Fires following earthquake (FFE) have historically produced enormous post-earthquake damage and losses in terms of lives, buildings and economic costs, like the San Francisco earthquake (1906), the Kobe earthquake (1995), the Turkey earthquake (2011), the Tohoku earthquake (2011) and the Christchurch earthquakes (2011). The structural fire performance can worsen significantly because the fire acts on a structure damaged by the seismic event. On these premises, the purpose of this work is the investigation of the experimental and numerical response of structural and non-structural components of steel structures subjected to fire following earthquake (FFE) to increase the knowledge and provide a robust framework for hybrid fire testing and hybrid fire following earthquake testing. A partitioned algorithm to test a real case study with substructuring techniques was developed. The framework is developed in MATLAB and it is also based on the implementation of nonlinear finite elements to model the effects of earthquake forces and post-earthquake effects such as fire and thermal loads on structures. These elements should be able to capture geometrical and mechanical non-linearities to deal with large displacements. Two numerical validation procedures of the partitioned algorithm simulating two virtual hybrid fire testing and one virtual hybrid seismic testing were carried out. Two sets of experimental tests in two different laboratories were performed to provide valuable data for the calibration and comparison of numerical finite element case studies reproducing the conditions used in the tests. Another goal of this thesis is to develop a fire following earthquake numerical framework based on a modified version of the OpenSees software and several scripts developed in MATLAB to perform probabilistic analyses of structures subjected to FFE. A new material class, namely SteelFFEThermal, was implemented to simulate the steel behaviour subjected to FFE events.
|
Page generated in 0.1058 seconds