• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 283
  • 59
  • 23
  • 8
  • 8
  • 8
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 1
  • Tagged with
  • 698
  • 185
  • 184
  • 154
  • 135
  • 123
  • 103
  • 80
  • 80
  • 64
  • 61
  • 39
  • 38
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

Effects of magnitude, depth, and time on Cellular Seismology Forecasts

Fisher, Steven Wolf January 2013 (has links)
Thesis advisor: Alan L. Kafka / This study finds that, in most cases analyzed to date, past seismicity tends to delineate zones where future earthquakes are likely to occur. Network seismicity catalogs for the New Madrid Seismic Zone (NMSZ), Australia (AUS), California (CA), and Alaska (AK) are analyzed using modified versions of the Cellular Seismology (CS) method of Kafka (2002, 2007). The percentage of later occurring earthquakes located near earlier occurring earthquakes typically exceeds the expected percentage for randomly distributed later occurring earthquakes, and the specific percentage is influenced by several variables, including magnitude, depth, time, and tectonic setting. At 33% map area coverage, hit percents are typically 85-95% in the NMSZ, 50-60% in AUS, 75-85% in CA, and 75-85% in AK. Statistical significance testing is performed on trials analyzing the same variables so that the overall regions can be compared, although some tests are inconclusive due to the small number of earthquake sample sizes. These results offer useful insights into understanding the capabilities and limits of CS studies, which can provide guidance for improving the seismicity-based components of seismic hazard assessments. / Thesis (MS) — Boston College, 2013. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Earth and Environmental Sciences.
442

Desenvolvimento e construção de um sismógrafo para monitoramento de vibrações e pressão acústica / not available

Varella Neto, Celso Bairros 03 April 2017 (has links)
Esta pesquisa apresenta o projeto, construção e testes, tanto de laboratório como de campo de um sismógrafo de engenharia para o monitoramento dos níveis de vibração e pressão acústica, resultantes do processo de desmonte de rocha utilizando explosivos. Desenvolveram-se filtros e amplificadores com características que atendam às especificações impostas pelo guia intitulado \"ISEE Performance Specifications for Blasting Seismographs\" (ISEE, 2011), bem como, foram utilizados sensores (geofones e microfone) desenvolvidos e fabricados por terceiros, mas que atendam às características impostas pelo guia. A interconexão entre a etapa analógica com a digital foi realizada através da utilização de módulos de conversão A/D com tecnologia Sigma-Delta e resolução de 24-bits. Todas as etapas de aquisição, processamento e armazenamento de dados são controladas através de um microcontrolador ARM Cortex-M de 32-bits, o qual provê os mais diversos e modernos periféricos. Os testes de laboratório demonstraram a eficácia dos circuitos analógicos, pois apresentaram resposta plana na banda de passagem, onde os filtros passa-baixa, do tipo Butterworth, proporcionaram uma atenuação de 36 dB/oitava a partir da frequência de corte de 500 Hz, enquanto os filtros passa-alta, do tipo passivo, proporcionaram uma atenuação de 6 dB/oitava abaixo da frequência de corte de 2 Hz. Os testes de operação confirmaram a fácil e rápida operação do conjunto sismográfico, enquanto os testes de campo demonstraram a praticidade de sua operação e confiabilidade e coerência dos resultados. Concluiu-se que o sistema é exequível, atendendo às necessidades de monitoramento de um processo de desmonte de rochas utilizando explosivos a um preço relativamente baixo, abrindo a possibilidade de utilizá-lo em monitoramentos permanentes em situações onde isto seja necessário. / This research presents the design, construction and laboratory and field testing of an engineering seismograph for monitoring vibration and acoustic pressure levels during rock blasting. Filters and amplifiers with characteristics that meet the specifications of ISEE Performance Specifications for Blasting Seismographs (ISEE, 2011) have been developed. Third part sensors (geophones and microphones) were selected to attend the characteristics suggested by the guide. The interconnection between the analog and the digital stages was accomplished with A/D conversion modules with Sigma- Delta technology and 24-bit resolution. All data acquisition, processing and storage steps are controlled by a 32-bit ARM Cortex-M microcontroller, which provides several and modern peripherals. Laboratory tests confirmed the effectiveness of the analog circuits that presented flat response between 2 and 500Hz. The low-pass filters developed are type Butterworth with an attenuation factor of 36 dB/octave for frequencies above 500 Hz. The high-pass filters are of passive type with rejection factor of 6 dB/octave below 2 Hz. The operation of the system presented to be easy and fast. Field tests demonstrated its friendliness and the results showed to be consistent. It was concluded that the system is feasible and applicable to monitor rock-blasting process. Its relatively low price opens up the possibility of using it for permanent monitoring in situations where this might be necessary.
443

Tomografia de ruído ambiental na Bacia do Paraná / Ambient Noise Tomography beneath the Parana Basin

Bruno de Barros Collaço 24 April 2014 (has links)
A tomografia sísmica convencional apresenta baixa resolução em regiões de baixa sismicidade, como consequência, estudos prévios realizados na América do Sul não mapearam com clareza áreas menores do continente, como a região da bacia do Paraná. Para descrever a estrutura da crosta na região da bacia do Paraná, além de dados obtidos através da análise de terremotos andinos, foram utilizadas curvas de dispersão provenientes da correlação do ruído ambiental entre pares de estações sismográficas, técnica conhecida com Ambient Noise Tomography (ANT). Os mapas de velocidade de grupo obtidos correspondem bem com as principais províncias geológicas já conhecidas na América do Sul: baixas velocidades sob os Andes e bacias sedimentares e altas velocidades sob regiões cratônicas. As anomalias de alta velocidade encontradas para o manto superior, concordam com trabalhos prévios que confirmam a presença de um núcleo cratônico sob a bacia. Contudo, não é possível afirmar se tal núcleo está intacto ou não, principalmente devido resultados anteriores que mostram evidências da existência de um núcleo dividido por zonas de sutura. No entanto, a tomografia de ondas de superfície não possui resolução para confirmar este modelo. Como as etapas do processamento de dados são bem definidas e independentes, à medida que novas estações forem instaladas com o avanço do projeto BRASIS, novos caminhos serão adicionadas à base inicial, aumentando a resolução e confiabilidade dos resultados futuros. / Conventional seismic tomography is known to have poor resolution in regions of low seismicity, therefore, studies carried out in South America did not mapped clearly smaller areas of the continent, for example the region of the Parana basin. To describe the of the crustal structure of the Parana basin, in addition to data obtained by analysis of Andean earthquakes, we used dispersion curves from ambient noise correlation between pairs of seismographic stations, a technique known by Ambient Noise Tomography (ANT). The obtained group velocity maps correspond well with the main geological provinces already known in South America: low velocities under the Andes and sedimentary basins and high velocities in cratonic regions. The high velocity anomalies encountered in the upper mantle, agree with previous studies that confirm the presence of a nucleus in the cratonic basin. However, it is not possible to say whether such a nucleus is intact or not, mainly because previous results showing evidence of the existence of a nucleus divided by suture zones. Nevertheless, surface wave tomography has no resolution to confirm this model. The steps of data processing of this work are well defined and independent, thus, as new stations will being deployed with the advance of BRASIS Project, new paths will be added to the database, increasing the resolution and reliability of the future results.
444

Vertical motions at the fringes of the Icelandic plume

Schoonman, Charlotte Maria January 2017 (has links)
The Icelandic mantle plume has had a profound influence on the development of the North Atlantic region over its 64 Myr existence. Long-wavelength free-air gravity anomalies and full waveform tomographic studies suggest that the planform of the plume is highly irregular, with up to five fingers of hot asthenosphere radiating away from Iceland beneath the lithospheric plates. Two of these fingers extend beneath the British Isles and southern Scandinavia, where departures from crustal isostatic equilibrium and anomalous uplift have been identified. In this study, the spatial extent of present-day dynamic support associated with the Icelandic plume is investigated using receiver function analysis. Teleseismic events recorded at nine temporary and 59 permanent broadband, three-component seismometer stations are used to calculate 3864 P-to-S crustal receiver functions. The amplitude and arrival time of particular converted phases are assessed, and H-k stacking is applied to estimate bulk crustal properties. Sub-selections of receiver functions are jointly inverted with Rayleigh wave dispersion data to obtain crustal VS profiles at each station. Both inverse- and guided forward modelling techniques are employed, as well as a Bayesian, trans-dimensional algorithm. Moho depths thus obtained are combined with seismic wide-angle and deep reflection data to produce a comprehensive crustal thickness map of northwestern Europe. Moho depth is found to decrease from southeast (37 km) to northwest (26 km) in the British Isles and from northeast (46 km) to southwest (29 km) in Scandinavia, and does not positively correlate with surface elevation. Using an empirical relationship, crustal shear wave velocity profiles are converted to density profiles. Isostatic balances are then used to estimate residual topography at each station, taking into account these novel constraints on crustal density. Areas of significant residual topography are found in the northwestern British Isles (1400 m), southwestern Scandinavia (464 m) and Denmark (620 m), with convective support from the Icelandic plume as its most likely source. Finally, the irregular planform of the Icelandic plume is proposed to be a manifestation of radial viscous fingering due to a Saffman-Taylor instability. This fluid dynamical phenomenon occurs when less viscous fluid is injected into a layer of more viscous fluid. By comparing the thermal and convective characteristics of the plume with experimental and theoretical results, it is shown that viscous fingering could well explain the present-day distribution of plume material.
445

Improving beamforming-based methodologies for seismological analysis

Tan, Fengzhou 10 April 2019 (has links)
We improved two beamforming-based methodologies for seismological analysis. The first one is a new Three-Dimensional Phase-Weighted Relative Back Projection (3-D PWBP) method to improve the spatial resolution of Back Projection results. We exploit both phase and amplitude of the seismogram signal to enhance the distinction of correlated signals. Also, we implement a 3-D velocity model to provide more accurate travel times. We vindicate these refinements with several synthetic tests and an analysis of the 1997 Mw 7.2 Zirkuh (Iran) earthquake, which we show ruptured mainly unilaterally southwards at a rupture speed of ∼3.0 km/s along its ∼125 km- long, mostly single-stranded surface rupture. Then, we apply the new method to the more complex case of the 2016 Mw 7.8 Kaikoura (New Zealand) earthquake, which we demonstrate is divided into two major stages separated by a gap of ∼8 s and ∼30–40 km. The overall rupture speed is ∼1.7 km/s and the overall duration is ∼84 s, considerably shorter than some earlier estimates. We see no clear evidence for continuous failure of the subduction interface that underlies the known, surface-rupturing crustal faults, though we cannot rule out its involvement in the second major stage in the northern part of the rupture area. The late (∼80 s) peak in relative energy is likely a high-frequency stopping phase, and the rupture appears to terminate southwest of the offshore Needles fault. The second methodology is a novel workflow for earthquake detection and location, named Seismicity-Scanning based on Navigated Automatic Phase-picking (S-SNAP). By taking a cocktail approach that combines Source-Scanning, Kurtosis-based Phase-picking and the Maximum Intersection location technique into a single integrated workflow, this new method is capable of delineating complex spatiotemporal distributions of seismicity. It is automatic, efficiently providing earthquake locations with high comprehensiveness and accuracy. We apply S-SNAP to a dataset recorded by a dense local seismic array during a hydraulic fracturing operation to test this novel approach and to demonstrate the effectiveness of S-SNAP in comparison to existing methods. Overall, S-SNAP found nearly four times as many high-quality events as a template-matching based catalogue. All events in the previous catalogue are identi- fied with similar epicenter, depth and magnitude, while no false detections are found by visual inspection. / Graduate
446

A Structural and 40Ar/39Ar Geochronological Re-Evaluation of Low-Angle Normal Faults in Southeastern Idaho

Vankeuren, Marc Anthony January 2015 (has links)
The development of gently inclined faults with large stratigraphic separation has long been enigmatic in the corridor of southeastern Idaho. Recent interpretations have culled examples from across the Basin and Range to suggest that these faults originated at a low dip and represent a regional scale low-angle normal fault system. In contrast, others cite extensive studies from fault mechanics and seismological data that cast doubt on whether these extensional structures could have formed at low inclination in the upper crust. This dissertation reviews the evidence and timing of the proposed Bannock detachment system in the Bannock Range of southeastern Idaho and puts forth a re-evaluation of the styles of extension in the region and a regional framework in which to place them. Chapter 1 re-evaluates gently dipping normal faults in the southern Bannock Range of southeastern Idaho that have previously been interpreted as evidence for a regional detachment system originating and slipping at a low inclination. Previous work was based on geometrical relations between faults and bedding in lacustrine sediments of the upper Miocene to lower Pliocene Salt Lake Formation. The detachment argument was underpinned by three locations on the Oxford Mountain at which Salt Lake Formation was inferred to have been cut by low-angle normal faults. These locations have been re-evaluated. Two of the locations were found to preserve bedding-to-fault geometries that are well explained by offset from a fault of moderately dipping inclination. The third example is re-interpreted as an unconformable contact, not a fault, an observation that by itself precludes the existence of a detachment at that location. Chapter 2 presents a test of tephronchronology by the 40Ar/39Ar isotopic method. This study compares ages obtained by the geochronologic method of tephrochronology to ages obtained by 40Ar/39Ar single grain laser fusion of feldspars. The results of this study suggest certain considerations must be made when employing the method of tephrochronology for chronological work. Chapter 3 presents a regional synthesis for the tectonics of southeastern Idaho expanding on the new data presented in chapters 1 and 2. 40Ar/39Ar ages obtained from the Salt Lake Formation show evidence that extension in this region was underway > 15 Ma. Bedding-to-fault cutoff angles for the low-angle faults with the largest stratigraphic separations in the region suggest that the now gently inclined normal faults developed with moderate to steep dips, then tilted to lower inclination during continued extension. A splay of the Paris thrust is interpreted to account for both geometric relations between Paleozoic age rocks and the Neoproterozoic Pocatello Formation, as well as an unconformable contact between Pocatello Formation and late Miocene to Pliocene lake deposits of the Salt Lake Formation. This dissertation focuses on one example of a detachment system. However, it has implications for low-angle faults in general – particularly in regions like the Basin and Range that have had a protracted deformation history. The examples we have studied are important because they involve strata as young as Pliocene and they provide strong support for the role of tilting in accounting for the present-day attitude of large-offset normal faults, eliminating the need for the well-known mechanical paradox of low-angle normal fault formation.
447

Espessura crustal da parte norte dos Andes usando precursores de pP e sS para telessismos / Crustal thickness in Northern Andes using pP and sS precursors recorded at teleseismic distances.

Camacho, Nataly Marcela Aranda 03 June 2014 (has links)
Para a realização dessa pesquisa foi desenvolvido um estudo da espessura crustal nos Andes setentrionais e na parte norte dos Andes centrais (entre 10ºN e 9ºS). Foram usadas reflexões da Moho de seis sismos de profundidade média para achar a espessura crustal na área de estudo. As ondas pmP e smS (reflexões na Moho) são encontradas como precursoras das fases profundas pP e sS de sismos registrados em estações localizadas a distâncias telessísmicas. A metodologia utilizada exigia sismos com profundidade maiores que 100 km e magnitude maiores que 6. Entretanto, devido à baixa amplitude apresentada pelas ondas pmP e smS, foi necessário realizar um empilhamento de vários sismogramas para realçar as chegadas das ondas analisadas. A área estudada foi dividida em três partes: área norte entre 6ºN e 0º(na Colômbia), área central entre 2ºS e 5ºS (no Equador) e área sul entre 6ºS e 9ºS (na borda entre Peru e Brasil). Na área norte foram encontradas espessuras crustais entre 26 e 56 km em quatro pontos de reflexão de dois sismos; na área central foram encontradas espessuras da crosta entre 40 e 63 km para três pontos de reflexão de um sismo; finalmente, na região sul, foram encontradas espessuras crustais entre 35 e 40 km para 7 pontos de reflexão de 3 sismos. Foi obtido a relação Vp/Vs = 1.79 ± 0.16 para a região norte dos Andes, usando as diferenças de tempo sS-smS e pP-pmP. Os resultados obtidos vão aumentar o banco de dados de espessura crustal nos Andes setentrionais e na parte norte dos Andes centrais, como também possibilitaram uma melhora do modelo de espessura crustal desenvolvido por Assumpção et al. (2013) para América do Sul, permitindo assim a analise e comparação entre os dados obtidos nesse estudo e o modelo crustal de Assumpção et al. (2013). / In this work we studied the crustal thickness in northern Andes and northern central Andes (between 10ºN and 9ºS). We analyzed the reflections from the underside of the Moho for six intermediate earthquakes occurred in the study area to estimate the crustal thickness at the bounce point. The pmP and smS phases (reflections at the Moho) are identied as precursors to the depth phase pP and sS, respectively, when recorded at teleseismic distances. This method require events of magnitude > 6 and depth > 100 km. In order to better identify those two reflections, it was necessary to stacking traces from different stations. The study area was divided in three sections: northern area between 6ºN - 0º (Colombia), in this area we analyzed two earthquakes and the crustal thicknesses in four bounce points were found; central area between 2ºS- 5ºS (Ecuador), in this area we studied one earthquake and the crustal thicknesses in three bounce points were found; southern area between 6ºS - 9ºS (Peru-Brazil border), where we analyzed three earthquakes and the crustal thicknesses in seven bounce points were found. Crustal thickness found in the southern area varied from 35 to 40 km, from 40 to 63 km in the central area and from 26 to 56 km in the northern area. We estimated a Vp/Vs ratio of 1.79±0.16 for the northern Andes using the time differences sS-smS and pP-pmP relation. Our analysis complements the data base of Moho depths in the Northern Andes and also, it allows a comparison with the model of crustal thickness estimated by Assumpção et al. (2013) confirming the Moho depth on both studies.
448

Tomografia de ruído ambiental na Bacia do Paraná / Ambient Noise Tomography beneath the Parana Basin

Collaço, Bruno de Barros 24 April 2014 (has links)
A tomografia sísmica convencional apresenta baixa resolução em regiões de baixa sismicidade, como consequência, estudos prévios realizados na América do Sul não mapearam com clareza áreas menores do continente, como a região da bacia do Paraná. Para descrever a estrutura da crosta na região da bacia do Paraná, além de dados obtidos através da análise de terremotos andinos, foram utilizadas curvas de dispersão provenientes da correlação do ruído ambiental entre pares de estações sismográficas, técnica conhecida com Ambient Noise Tomography (ANT). Os mapas de velocidade de grupo obtidos correspondem bem com as principais províncias geológicas já conhecidas na América do Sul: baixas velocidades sob os Andes e bacias sedimentares e altas velocidades sob regiões cratônicas. As anomalias de alta velocidade encontradas para o manto superior, concordam com trabalhos prévios que confirmam a presença de um núcleo cratônico sob a bacia. Contudo, não é possível afirmar se tal núcleo está intacto ou não, principalmente devido resultados anteriores que mostram evidências da existência de um núcleo dividido por zonas de sutura. No entanto, a tomografia de ondas de superfície não possui resolução para confirmar este modelo. Como as etapas do processamento de dados são bem definidas e independentes, à medida que novas estações forem instaladas com o avanço do projeto BRASIS, novos caminhos serão adicionadas à base inicial, aumentando a resolução e confiabilidade dos resultados futuros. / Conventional seismic tomography is known to have poor resolution in regions of low seismicity, therefore, studies carried out in South America did not mapped clearly smaller areas of the continent, for example the region of the Parana basin. To describe the of the crustal structure of the Parana basin, in addition to data obtained by analysis of Andean earthquakes, we used dispersion curves from ambient noise correlation between pairs of seismographic stations, a technique known by Ambient Noise Tomography (ANT). The obtained group velocity maps correspond well with the main geological provinces already known in South America: low velocities under the Andes and sedimentary basins and high velocities in cratonic regions. The high velocity anomalies encountered in the upper mantle, agree with previous studies that confirm the presence of a nucleus in the cratonic basin. However, it is not possible to say whether such a nucleus is intact or not, mainly because previous results showing evidence of the existence of a nucleus divided by suture zones. Nevertheless, surface wave tomography has no resolution to confirm this model. The steps of data processing of this work are well defined and independent, thus, as new stations will being deployed with the advance of BRASIS Project, new paths will be added to the database, increasing the resolution and reliability of the future results.
449

The 2014-15 Bárðarbunga-Holuhraun magmatic rifting episode : a seismic study

Agustsdottir, Thorbjorg January 2018 (has links)
On 16 August 2014 an unusual sequence of earthquakes began near the southeastern rim of the ice-covered Bárðarbunga caldera in central Iceland. Over the course of two weeks a dyke propagated 48 km beneath the glacier northeastwards and into the Holuhraun lava field, where it erupted for six months, becoming the largest eruption in Iceland for over 200 years. During this time, a gradual, incremental caldera collapse took place in the central volcano. The rifting episode was captured both geodetically and seismically. In this thesis, I analyse the seismic response to the event, both due to the dyke propagation, and the subsequent caldera collapse. This gives an insight into the underlying processes controlling rifting events, and the nature of the responding crust. The Cambridge seismic network recorded the 2014-15 Bárðarbunga-Holuhraun rifting episode in exceptional detail. I discuss the deployment and operation of this dense seismic network in the remote Icelandic highlands, as well as the campaign deployments on the volcano caldera, on the glacier (above the dyke path) and around the eventual eruption site, as a first response to the crisis. Using this dataset I have accurately located, and analysed, 47,000 earthquakes during the pre-intrusive, intrusive, eruptive and post-eruptive periods. Approximately 4,000 of the recorded earthquakes are associated with the caldera collapse, delineating faults accommodating the subsidence and showing good correlation with geodetic data. The seismicity reveals activation of both inner and outer caldera faults with 60 inward dipping planes on the northern and southern side, indicating a symmetric caldera structure. Detailed analysis of the earthquake source mechanisms shows that 90% can be explained by a double-couple solution, which is in contrast to results from previous studies of Bárðarbunga. I find the dominant failure mechanism during the collapse to be steep normal faulting, with sub-vertical P-axes, striking sub-parallel to the caldera rim. The northern and southern sides of the caldera, however experienced very different seismicity rates, highlighted by the order of magnitude difference in the cumulative seismic moments. The southeastern part of the caldera, whilst experiencing less activity, shows a mixture of failure mechanisms, owing to the interaction of the caldera collapse and the dyke exit. Therefore, this thesis presents evidence of a complex asymmetric caldera collapse, not controlled by a single caldera ring fault. Of the 47,000 earthquakes located, 31,000 delineate the segmented, lateral dyke intrusion as it fractured a pathway through the crust, utilizing pre-existing weaknesses. Despite the extensional rift setting, the dyke emplacement generated exclusively doublecouple earthquakes. At the leading edge of the propagation, earthquake source mechanisms show exclusively strike-slip faulting, in contrast to the conventional model of normal faulting above a propagating dyke. I observe right-lateral strike-slip faulting as the dyke propagates to the NE, and an abrupt change to left-lateral strike-slip faulting as the dyke turns and propagates in a more northerly direction into the northern volcanic zone. This shows that the direction of fault motion is determined by the opening of the dyke, rather than by the regional extension. I am also able to define the thickness of the seismogenic crust under Bárðarbunga as 7 km, based on the depth extent of observed seismicity. The bulk of the seismicity in the volcano is located at 1-4 km below the surface, whereas the dyke exited the caldera at 4-6 km depth, propagating at 6-8 km b.s.l. I hypothesise that the magma storage region is likely located at 4-6 km b.s.l. (6-8 km below the caldera surface), just below the most active caldera seismicity and at similar depth levels to the dyke. Thus, this thesis details the melt distribution and movement at depth from a large basaltic central volcano, and the coupled deformation of the subsiding caldera with the dyke intrusion and eruption.
450

Approche eulérienne de l'équation de Hamilton-Jacobi par une méthode Galerkine discontinue en milieu hétérogène anisotrope : Application à l'imagerie sismique / Eulerian approach of Hamilton-Jacobi equation with a discontinuous Galerkin method in heterogeneous anisotropic medium : Application to seismic imaging

Le Bouteiller, Philippe 06 December 2018 (has links)
Pouvoir déterminer la structure et la composition de l’intérieur de la Terre est un enjeu scientifique fondamental, pour la compréhension de l’organisation de la Terre profonde, des mécanismes des séismes et leur localisation en lien avec la prévention du risque sismique, pour la détection et l’exploitation des ressources naturelles telles que l’eau ou les hydrocarbures, ou encore pour toutes les activités de construction et de prévention associées au génie civil. Pour cela, les ondes sismiques sont un outil de choix. L’utilisation d’une approximation haute fréquence pour la modélisation de la propagation des ondes est avantageuse en termes de coût de calcul dès lors que plusieurs centaines, voire milliers, ou plus de longueurs d’ondes doivent être propagées. À la place de l’équation des ondes linéaire, l’approximation haute fréquence fournit trois équations aux dérivées partielles fondamentales. L’équation Eikonal, non linéaire, permet d’obtenir le temps de trajet. Une deuxième équation fournit l’angle d’émergence. L’équation Eikonal et l’équation des angles appartiennent toutes deux à la grande famille des équations de Hamilton-Jacobi. Enfin, l’équation de transport permet de calculer l’amplitude.Le tracé des rais sismiques est une technique lagrangienne qui utilise la méthode des caractéristiques pour obtenir un ensemble d’équations différentielles ordinaires à partir de ces équations aux dérivées partielles. Ces équations peuvent être intégrées facilement, donnant ainsi accès au temps de trajet et à l’amplitude le long des rais. Très largement utilisés dans la communauté géophysique du fait de leur simplicité, les outils de tracé de rais ne sont pas pour autant les plus efficaces et les plus robustes en pratique pour des applications d’imagerie et d’inversion haute résolution. En lieu et place, il peut être utile de résoudre directement les équations aux dérivées partielles par une méthode eulérienne. Durant les trois dernières décennies, une multitude de solveurs ont été développés pour l’équation Eikonal, la plupart utilisant la méthode des différences finies. Ces différents travaux visent à obtenir le meilleur compromis entre précision, coût de calcul, robustesse, facilité d’implémentation et souplesse d’utilisation.Dans cette thèse, je développe une approche différente, se basant principalement sur une méthode Galerkine discontinue. Dans le champ des mathématiques, cette méthode a été largement utilisée pour résoudre les lois de conservation et les équations de Hamilton-Jacobi. Très peu de travaux ont porté sur l'utilisation de cette méthode pour la résolution de l’équation Eikonal statique dans un contexte géophysique, et ce malgré le haut niveau de précision qu'elle apporte. C’est pourquoi, en me basant sur des travaux mathématiques, je propose un nouveau solveur Eikonal adapté au contexte géophysique. Les milieux hétérogènes complexes, anisotropes, et incluant des variations topographiques sont correctement pris en compte, avec une précision sans précédent. En y intégrant de manière robuste une stratégie de balayage rapide, je montre que ce solveur présente une très grande efficacité en deux comme en trois dimensions.J'utilise également ce solveur pour calculer l’angle d’émergence. Je développe par ailleurs un solveur voisin en volumes finis pour la résolution de l’équation de transport, permettant ainsi le calcul de l’amplitude. La variable d’état adjoint pour la tomographie sismique des temps et des pentes vérifiant une équation de transport semblable, je montre qu'on peut également la calculer à l'aide de ce solveur en volumes finis. En conséquence, je propose et analyse un ensemble consistant de solveurs pour la communauté géophysique. Ces outils devraient s’avérer utiles pour une large palette d’applications. Finalement, en guise d’illustration, je les utilise dans des schémas d’imagerie sismique, dans le but de démontrer le bénéfice apporté par une approximation haute fréquence dans ce type de schémas. / Recovering information on the structure and the composition of the Earth's interior is a fundamental issue for a large range ofapplications, from planetology to seismology, natural resources assessment, and civil engineering. Seismic waves are a very powerful tool for that purpose. Using a high-frequency approximation for the numerical modeling of seismic wave propagation is computationally advantageous when hundreds, thousands, or more of wavelengths have to be propagated. Instead of the linear wave equation, the high-frequency approximation yields three fundamental partial differential equations. The nonlinear Eikonal equation leads to traveltime. A second equation is derived for the take-off angle. Both Eikonal and angle equations belong to the wide Hamilton-Jacobi family of equations. In addition, the transport equation leads to the amplitude.As a Lagrangian approach, seismic ray tracing employs the method of characteristics to derive a set of ordinary differential equations from these partial differential equations. They can be easily integrated, thus yielding traveltime and amplitude along rays. Widely used in the geophysical community for their simplicity, the ray-tracing tools might not be the most efficient and robust ones for practical high-resolution imaging and inversion applications. Instead, it might be desirable to directly solve the partial differential equations in an Eulerian way. In the three last decades, plenty of Eikonal solvers have been designed, mostly based on finite-difference methods. Successive works try to find the best compromise between accuracy, computational efficiency, robustness, ease of implementation, and versatility.In this thesis, I develop a different approach, mainly based on the discontinuous Galerkin method. This method has been intensively used in the mathematical field for solving conservation laws and time-dependent Hamilton-Jacobi equations. Only few investigations have been done regarding its use for solving the static Eikonal equation in a geophysical context, despite the high level of accuracy allowed by this method. Therefore, improving upon mathematical studies, I propose a new Eikonal solver suitable for the geophysical context. Complex heterogeneous anisotropic media with non-flat topographies are correctly handled, with an unprecedented accuracy. Combined with a fast-sweeping strategy in a robust way, I show that this new solver exhibits a high computational efficiency, in two dimensions as well as in three dimensions.I also employ this solver for the computation of the take-off angle. I design an additional finite-volume solver for solving the transport equation, leading to the computation of amplitude. With this solver, I also consider the computation of the adjoint-state variable for seismic tomography, since it satisfies a similar transport equation. Eventually, I propose a whole set of consistent solvers to the geophysical community. These tools should be useful in a wide range of applications. As an illustration, I finally use them in advanced seismic imaging schemes, in order to demonstrate the benefit brought by the high-frequency approximation in this kind of schemes.

Page generated in 0.0499 seconds