• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

From Algorithmic Computing to Autonomic Computing

13 February 2018 (has links) (PDF)
In algorithmic computing, the program follows a predefined set of rules – the algorithm. The analyst/designer of the program analyzes the intended tasks of the program, defines the rules for its expected behaviour and programs the implementation. The creators of algorithmic software must therefore foresee, identify and implement all possible cases for its behaviour in the future application! However, what if the problem is not fully defined? Or the environment is uncertain? What if situations are too complex to be predicted? Or the environment is changing dynamically? In many such cases algorithmic computing fails. In such situations, the software needs an additional degree of freedom: Autonomy! Autonomy allows software to adapt to partially defined problems, to uncertain or dynamically changing environments and to situations that are too complex to be predicted. As more and more applications – such as autonomous cars and planes, adaptive power grid management, survivable networks, and many more – fall into this category, a gradual switch from algorithmic computing to autonomic computing takes place. Autonomic computing has become an important software engineering discipline with a rich literature, an active research community, and a growing number of applications.
2

From Algorithmic Computing to Autonomic Computing

Furrer, Frank J., Püschel, Georg 13 February 2018 (has links)
In algorithmic computing, the program follows a predefined set of rules – the algorithm. The analyst/designer of the program analyzes the intended tasks of the program, defines the rules for its expected behaviour and programs the implementation. The creators of algorithmic software must therefore foresee, identify and implement all possible cases for its behaviour in the future application! However, what if the problem is not fully defined? Or the environment is uncertain? What if situations are too complex to be predicted? Or the environment is changing dynamically? In many such cases algorithmic computing fails. In such situations, the software needs an additional degree of freedom: Autonomy! Autonomy allows software to adapt to partially defined problems, to uncertain or dynamically changing environments and to situations that are too complex to be predicted. As more and more applications – such as autonomous cars and planes, adaptive power grid management, survivable networks, and many more – fall into this category, a gradual switch from algorithmic computing to autonomic computing takes place. Autonomic computing has become an important software engineering discipline with a rich literature, an active research community, and a growing number of applications.:Introduction 5 1 A Process Data Based Autonomic Optimization of Energy Efficiency in Manufacturing Processes, Daniel Höschele 9 2 Eine autonome Optimierung der Stabilität von Produktionsprozessen auf Basis von Prozessdaten, Richard Horn 25 3 Assuring Safety in Autonomous Systems, Christian Rose 41 4 MAPE-K in der Praxis - Grundlage für eine mögliche automatische Ressourcenzuweisung, in der Cloud Michael Schneider 59
3

Testing Self-Adaptive Systems

Püschel, Georg 14 September 2018 (has links)
Autonomy is the most demanded yet hard-to-achieve feature of recent and future software systems. Self-driving cars, mail-delivering drones, automated guided vehicles in production sites, and housekeeping robots need to decide autonomously during most of their operation time. As soon as human intervention becomes necessary, the cost of ownership increases, and this must be avoided. Although the algorithms controlling autonomous systems become more and more intelligent, their hardest opponent is their inflexibility. The more environmental situations such a system is confronted with, the more complexity the control of the autonomous system will have to master. To cope with this challenge, engineers have approached a system design, which adopts feedback loops from nature. The resulting architectural principle, which they call self-adaptive systems, follows the idea of iteratively gathering sensor data, analyzing it, planning new adaptations of the system, and finally executing the plan. Often, adaptation means to alter the system setup, re-wire components, or even exchange control algorithms to keep meeting goals and requirements in the newly appeared situation. Although self-adaptivity helps engineers to organize the vast amount of information in a self-deciding system, it remains hard to deal with the variety of contexts, which involve both environmental influences and knowledge about the system\'s internals. This challenge not only holds for the construction phase but also for verification and validation, including software test. To assure sufficient quality of a system, it must be tested under an enormous and, thus, unmanageable, number of different contextual situations and manual test-cases. This thesis proposes a novel set of methods and model types, which help test engineers to specify precisely what they expect from a self-adaptive system under test. The formal nature of the introduced artifacts allows for automatically generating test-suites or running simulations in the loop so that a qualitative verdict on the system\'s correctness can be gained. Additional to these conceptional contributions, the thesis describes a model-based adaptivity test environment, which test engineers can use for testing actual self-adaptive systems. The implementation includes comprehensive tooling for creating the introduced types of models, generating test-cases, simulating them in the loop, automating tests, and reporting. Composing all enabling components for these tasks constitutes a reference architecture of integrated test environments for self-adaptive systems. We demonstrate the completeness and accuracy of the technical approach together with the underlying concepts by evaluating them in an experimental case study where an autonomous robot interacts with human co-workers. In summary, this thesis proposes concepts for automatically and, thus, efficiently testing self-adaptive systems. The quality, which is fostered by this novel approach, is resilience: the ability of a system to maintain its promises while facing changing environments.:1 Introduction 1 1.1 Problem Description 1 1.2 Overview of Adopted Methods 3 1.3 Hypothesis and Main Contributions 4 1.4 Organization of This Thesis 5 I Foundations 7 2 Background 9 2.1 Self-adaptive Software and Autonomic Computing 9 2.1.1 Common Principles and Components of SAS 10 2.1.2 Concrete Implementations and Applications of SAS 12 2.2 Model-based Testing 13 2.2.1 Testing for Dependability 14 2.2.2 The Basics of Testing 15 2.2.3 Automated Test Design 18 2.3 Dynamic Variability Management 22 2.3.1 Software Product Lines 23 2.3.2 Dynamic Software Product Lines 25 3 Related Work: Existing Research on Testing Self-Adaptive Systems 29 3.1 Testing Context-Aware Applications 30 3.2 The SimSOTA Project 31 3.3 Dynamic Variability in Complex Adaptive Systems (DiVA) 33 3.4 Other Early-Stage Research 34 3.5 Taxonomy of Requirements of Model-based SAS Testing 36 II Methods 39 4 Model-driven SAS Testing 41 4.1 Problem/Solution Fit 41 4.2 Example: Surveillance Drone 43 4.3 Concepts and Models for Testing Self-Adaptive Systems 44 4.3.1 Test Case Generation vs. Simulation in the Loop 44 4.3.2 Incremental Modeling Process 45 4.3.3 Basic Representation Format: Petri Nets 46 4.3.4 Context Variation 50 4.3.5 Modeling Adaptive Behavior 53 4.3.6 Dynamic Context Change 57 4.3.7 Interfacing Context from Behavioral Representation 62 4.3.8 Adaptation Mode Variation 64 4.3.9 Context-Dependent Recon guration 67 4.4 Adequacy Criteria for SAS Test Models 71 4.5 Discussion on the Viability of the Employed Models 71 4.6 Comparison to Related Work 73 4.7 Summary and Discussion 74 5 Model-based Adaptivity Test Environment 75 5.1 Technological Foundation 76 5.2 MATE Base Components 77 5.3 Metamodel Implementation 78 5.3.1 Feature-based Variability Model 79 5.3.2 Abstract and Concrete Syntax for Textual Notations 80 5.3.3 Adaptive Petri Nets 86 5.3.4 Stimulus and Recon guration Automata 87 5.3.5 Test Suite and Report Model 87 5.4 Test Generation Framework 87 5.5 Test Automation Framework 91 5.6 MATE Tooling and the SAS Test Process 93 5.6.1 Test Modeling 94 5.6.2 Test Case Generation 95 5.6.3 Test Case Execution and Test Reporting 96 5.6.4 Interactive Simulation Frontend 96 5.7 Summary and Discussion 97 III Evaluation 99 6 Experimental Study: Self-Adaptive Co-Working Robots 101 6.1 Robot Teaching and Co-Working with WEIR 103 6.1.1 WEIR Hardware Components 104 6.1.2 WEIR Software Infrastructure 105 6.1.3 KUKA LBR iiwa as WEIR Manipulator 106 6.1.4 Self-Adaptation Capabilities of WEIR 107 6.2 Cinderella as Testable Co-Working Application 109 6.2.1 Cinderella Setup and Basic Functionality 109 6.2.2 Co-Working with Cinderella 110 6.3 Testing Cinderella with MATE 112 6.3.1 Automating Test Execution 112 6.3.2 Modeling Cinderella in MATE 113 6.3.3 Testing Cinderella in the Loop 121 6.4 Evaluation Verdict and Summary 123 7 Summary and Discussion 125 7.1 Summary of Contributions 126 7.2 Open Research Questions 127 Bibliography 129 Appendices 137 Appendix Cinderella De nitions 139 1 Cinderella Adaptation Bounds 139 2 Cinderella Self-adaptive Workflow 140
4

Modular Specification of Self-Adaptive Systems with Models at Runtime using Relational Reference Attribute Grammars

Schöne, René 18 December 2023 (has links)
Adaptation enables a reaction to a changing environment. For traditional software development, that means changing the design and implementation of the software in a potentially complex and expensive process. If requirements are not known until the runtime of a software system, this system must be able to cope with changes during its runtime. For this, self-adaptive systems (SAS) were created. They have internal knowledge about themselves and their environment to reason about changes and take appropriate actions. Many approaches aiming to build such systems have been published since the start of the research area at the beginning of the 21st century. However, it is difficult to find an appropriate approach, even when all requirements of a scenario the system should be built for are known. If no suitable approach can be found, software developers have to built a new system leading to high development costs and potentially inefficient solutions due to the complexity of the system. This thesis follows two goals: (1) To make approaches building SAS more comparable through a feature model describing features of SAS, and (2) to provide a novel way of specifying SAS concisely using reference attribute grammars (RAGs) providing efficient systems. RAGs originate from the research field of compiler construction and enable the concise description of parts of the internal knowledge mentioned above as well as of the computation of the actions to cope with recognised changes. To make RAGs fully usable, this thesis presents two extensions: Relational RAGs enable the efficient handling of relations required for knowledge graphs, and Connected RAGs let RAG-based system communicate with other external systems to both recognise changes and execute actions. To evaluate the novel approaches, a classification of 30 approaches for the feature model and several case studies in the areas smart home, robotics, and system orchestration were conducted. It can be shown, that significantly less code is required to specify SAS. To specify the computation, 14.5 % to 28.7 % less code was required, whereas in another case study only 6.3 % of the total code was manually written and the rest was generated. The efficiency is similar to the best comparable approaches for graph queries. Furthermore, using additional optimizations (incremental evaluation), the execution time can be shown to be faster by a factor of 167.88 less albeit being sometimes by 50.0 % slower for very small workloads and specific queries. In a more realistic, extrapolated experiment, using incremental evaluation creates speed-up factors between 6.63 and 44.93. With the contributions in this thesis, existing approaches can be selected more precisely, new approaches can classify themselves within the research area, and the development of self-adaptive systems is possible using RAG-based systems.

Page generated in 0.0447 seconds