• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelo de custo para consultas por similaridade em espaços métricos / Cost model for similarity queries in metric spaces

Baioco, Gisele Busichia 24 January 2007 (has links)
Esta tese apresenta um modelo de custo para estimar o número de acessos a disco (custo de I/O) e o número de cálculos de distância (custo de CPU) para consultas por similaridade executadas sobre métodos de acesso métricos dinâmicos. O objetivo da criação do modelo é a otimização de consultas por similaridade em Sistemas de Gerenciamento de Bases de Dados relacionais e objeto-relacionais. Foram considerados dois tipos de consultas por similaridade: consulta por abrangência e consulta aos k-vizinhos mais próximos. Como base para a criação do modelo de custo foi utilizado o método de acesso métrico dinâmico Slim-Tree. O modelo estima a dimensão intrínseca do conjunto de dados pela sua dimensão de correlação fractal. A validação do modelo é confirmada por experimentos com conjuntos de dados sintéticos e reais, de variados tamanhos e dimensões, que mostram que as estimativas obtidas em geral estão dentro da faixa de variação medida em consultas reais / This thesis presents a cost model to estimate the number of disk accesses (I/O costs) and the number of distance calculations (CPU costs) to process similarity queries over data indexed by dynamic metric access methods. The goal of the model is to optimize similarity queries on relational and object-relational Database Management Systems. Two types of similarity queries were taken into consideration: range queries and k-nearest neighbor queries. The dynamic metric access method Slim-Tree was used as the basis for the creation of the cost model. The model takes advantage of the intrinsic dimension of the data set, estimated by its correlation fractal dimension. Experiments were performed on real and synthetic data sets, with different sizes and dimensions, in order to validate the proposed model. They confirmed that the estimations are accurate, being always within the range achieved executing real queries
2

Modelo de custo para consultas por similaridade em espaços métricos / Cost model for similarity queries in metric spaces

Gisele Busichia Baioco 24 January 2007 (has links)
Esta tese apresenta um modelo de custo para estimar o número de acessos a disco (custo de I/O) e o número de cálculos de distância (custo de CPU) para consultas por similaridade executadas sobre métodos de acesso métricos dinâmicos. O objetivo da criação do modelo é a otimização de consultas por similaridade em Sistemas de Gerenciamento de Bases de Dados relacionais e objeto-relacionais. Foram considerados dois tipos de consultas por similaridade: consulta por abrangência e consulta aos k-vizinhos mais próximos. Como base para a criação do modelo de custo foi utilizado o método de acesso métrico dinâmico Slim-Tree. O modelo estima a dimensão intrínseca do conjunto de dados pela sua dimensão de correlação fractal. A validação do modelo é confirmada por experimentos com conjuntos de dados sintéticos e reais, de variados tamanhos e dimensões, que mostram que as estimativas obtidas em geral estão dentro da faixa de variação medida em consultas reais / This thesis presents a cost model to estimate the number of disk accesses (I/O costs) and the number of distance calculations (CPU costs) to process similarity queries over data indexed by dynamic metric access methods. The goal of the model is to optimize similarity queries on relational and object-relational Database Management Systems. Two types of similarity queries were taken into consideration: range queries and k-nearest neighbor queries. The dynamic metric access method Slim-Tree was used as the basis for the creation of the cost model. The model takes advantage of the intrinsic dimension of the data set, estimated by its correlation fractal dimension. Experiments were performed on real and synthetic data sets, with different sizes and dimensions, in order to validate the proposed model. They confirmed that the estimations are accurate, being always within the range achieved executing real queries
3

Algorithms for XML stream processing : massive data, external memory and scalable performance / Algorithmes de traitement de flux XML : masses de données, mémoire externe et performances extensibles

Alrammal, Muath 16 May 2011 (has links)
Plusieurs applications modernes nécessitent un traitement de flux massifs de données XML, cela crée de défis techniques. Parmi ces derniers, il y a la conception et la mise en ouvre d'outils pour optimiser le traitement des requêtes XPath et fournir une estimation précise des coûts de ces requêtes traitées sur un flux massif de données XML. Dans cette thèse, nous proposons un nouveau modèle de prédiction de performance qui estime a priori le coût (en termes d'espace utilisé et de temps écoulé) pour les requêtes structurelles de Forward XPath. Ce faisant, nous réalisons une étude expérimentale pour confirmer la relation linéaire entre le traitement de flux, et les ressources d'accès aux données. Par conséquent, nous présentons un modèle mathématique (fonctions de régression linéaire) pour prévoir le coût d'une requête XPath donnée. En outre, nous présentons une technique nouvelle d'estimation de sélectivité. Elle se compose de deux éléments. Le premier est le résumé path tree: une présentation concise et précise de la structure d'un document XML. Le second est l'algorithme d'estimation de sélectivité: un algorithme efficace de flux pour traverser le synopsis path tree pour estimer les valeurs des paramètres de coût. Ces paramètres sont utilisés par le modèle mathématique pour déterminer le coût d'une requête XPath donnée. Nous comparons les performances de notre modèle avec les approches existantes. De plus, nous présentons un cas d'utilisation d'un système en ligne appelé "online stream-querying system". Le système utilise notre modèle de prédiction de performance pour estimer le coût (en termes de temps / mémoire) d'une requête XPath donnée. En outre, il fournit une réponse précise à l'auteur de la requête. Ce cas d'utilisation illustre les avantages pratiques de gestion de performance avec nos techniques / Many modern applications require processing of massive streams of XML data, creating difficult technical challenges. Among these, there is the design and implementation of applications to optimize the processing of XPath queries and to provide an accurate cost estimation for these queries processed on a massive steam of XML data. In this thesis, we propose a novel performance prediction model which a priori estimates the cost (in terms of space used and time spent) for any structural query belonging to Forward XPath. In doing so, we perform an experimental study to confirm the linear relationship between stream-processing and data-access resources. Therefore, we introduce a mathematical model (linear regression functions) to predict the cost for a given XPath query. Moreover, we introduce a new selectivity estimation technique. It consists of two elements. The first one is the path tree structure synopsis: a concise, accurate, and convenient summary of the structure of an XML document. The second one is the selectivity estimation algorithm: an efficient stream-querying algorithm to traverse the path tree synopsis for estimating the values of cost-parameters. Those parameters are used by the mathematical model to determine the cost of a given XPath query. We compare the performance of our model with existing approaches. Furthermore, we present a use case for an online stream-querying system. The system uses our performance predicate model to estimate the cost for a given XPath query in terms of time/memory. Moreover, it provides an accurate answer for the query's sender. This use case illustrates the practical advantages of performance management with our techniques
4

Robust Query Optimization for Analytical Database Systems

Hertzschuch, Axel 09 August 2023 (has links)
Querying and efficiently analyzing complex data is required to gain valuable business insights, to support machine learning applications, and to make up-to-date information available. Therefore, this thesis investigates opportunities and challenges of selecting the most efficient execution strategy for analytical queries. These challenges include hard-to-capture data characteristics such as skew and correlation, the support of arbitrary data types, and the optimization time overhead of complex queries. Existing approaches often rely on optimistic assumptions about the data distribution, which can result in significant response time delays when these assumptions are not met. On the contrary, we focus on robust query optimization, emphasizing consistent query performance and applicability. Our presentation follows the general select-project-join query pattern, representing the fundamental stages of analytical query processing. To support arbitrary data types and complex filter expressions in the select stage, a novel sampling-based selectivity estimator is developed. Our approach exploits information from filter subexpressions and estimates correlations that are not captured by existing sampling-based methods. We demonstrate improved estimation accuracy and query execution time. Further, to minimize the runtime overhead of sampling, we propose new techniques that exploit access patterns and auxiliary database objects such as indices. For the join stage, we introduce a robust optimization approach by developing an upper-bound join enumeration strategy that connects accurate filter selectivity estimates –e.g., using our sampling-based approach– to join ordering. We demonstrate that join orders based on our upper-bound join ordering strategy achieve more consistent performance and faster workload execution on state-of-the-art database systems. However, besides identifying good logical join orders, it is crucial to determine appropriate physical join operators before query plan execution. To understand the importance of fine-grained physical operator selections, we exhaustively execute fixed join orders with all possible operator combinations. This analysis reveals that none of the investigated query optimizers fully reaches the potential of optimal operator decisions. Based on these insights and to achieve fine-grained operator selections for the previously determined join orders, the thesis presents a lightweight learning-based physical execution plan refinement component called. We show that this refinement component consistently outperforms existing approaches for physical operator selection while enabling a novel two-stage optimizer design. We conclude the thesis by providing a framework for the two-stage optimizer design that allows users to modify, replicate, and further analyze the concepts discussed throughout this thesis.:1 INTRODUCTION 1.1 Analytical Query Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2 Select-Project-Join Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 Basics of SPJ Query Optimization . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.1 Plan Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.2 Cost Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3.3 Cardinality Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4 Robust SPJ Query Optimization . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4.1 Tail Latency Root Cause Analysis . . . . . . . . . . . . . . . . . . . 17 1.4.2 Tenets of Robust Query Optimization . . . . . . . . . . . . . . . . . 19 1.5 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 SELECT (-PROJECT) STAGE 2.1 Sampling for Selectivity Estimation . . . . . . . . . . . . . . . . . . . . . . 24 2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.1 Combined Selectivity Estimation (CSE) . . . . . . . . . . . . . . . . 29 2.2.2 Kernel Density Estimator . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3 Beta Estimator for 0-Tuple-Situations . . . . . . . . . . . . . . . . . . . . . 33 2.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.2 Beta Distribution in Non-0-TS . . . . . . . . . . . . . . . . . . . . . . 35 2.3.3 Parameter Estimation in 0-TS . . . . . . . . . . . . . . . . . . . . . . 37 2.3.4 Selectivity Estimation and Predicate Ordering . . . . . . . . . . . 39 2.3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.4 Customized Sampling Techniques . . . . . . . . . . . . . . . . . . . . . . 53 2.4.1 Focused Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.4.2 Conditional Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.4.3 Zone Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3 JOIN STAGE: LOGICAL ENUMERATION 3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.1.1 Point Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.1.2 Join Cardinality Upper Bound . . . . . . . . . . . . . . . . . . . . . 64 3.2 Upper Bound Join Enumeration with Synopsis (UES) . . . . . . . . . . . . 66 3.2.1 U-Block: Simple Upper Bound for Joins . . . . . . . . . . . . . . . . 67 3.2.2 E-Block: Customized Enumeration Scheme . . . . . . . . . . . . . 68 3.2.3 UES Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.3.1 General Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4 JOIN STAGE: PHYSICAL OPERATOR SELECTION 4.1 Operator Selection vs Join Ordering . . . . . . . . . . . . . . . . . . . . . 77 4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.1 Adaptive Query Processing . . . . . . . . . . . . . . . . . . . . . . 80 4.2.2 Bandit Optimizer (Bao) . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.3 TONIC: Learned Physical Join Operator Selection . . . . . . . . . . . . . 82 4.3.1 Query Execution Plan Synopsis (QEP-S) . . . . . . . . . . . . . . . 83 4.3.2 QEP-S Life-Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.3.3 QEP-S Design Considerations . . . . . . . . . . . . . . . . . . . . . . 87 4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4.1 Performance Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.4.2 Rate of Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.4.3 Data Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.4.4 TONIC - Runtime Traits . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5 TWO-STAGE OPTIMIZER FRAMEWORK 5.1 Upper-Bound-Driven Join Ordering Component . . . . . . . . . . . . . 101 5.2 Physical Operator Selection Component . . . . . . . . . . . . . . . . . . 103 5.3 Example Query Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 103 6 CONCLUSION 107 BIBLIOGRAPHY 109 LIST OF FIGURES 117 LIST OF TABLES 121 A APPENDIX A.1 Basics of Query Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 A.2 Why Q? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 A.3 0-TS Proof of Unbiased Estimate . . . . . . . . . . . . . . . . . . . . . . . . 125 A.4 UES Upper Bound Property . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 A.5 TONIC – Selectivity-Aware Branching . . . . . . . . . . . . . . . . . . . . . 128 A.6 TONIC – Sequences of Query Execution . . . . . . . . . . . . . . . . . . . 129
5

Robust Query Optimization for Analytical Database Systems

Hertzschuch, Axel 25 September 2023 (has links)
Querying and efficiently analyzing complex data is required to gain valuable business insights, to support machine learning applications, and to make up-to-date information available. Therefore, this thesis investigates opportunities and challenges of selecting the most efficient execution strategy for analytical queries. These challenges include hard-to-capture data characteristics such as skew and correlation, the support of arbitrary data types, and the optimization time overhead of complex queries. Existing approaches often rely on optimistic assumptions about the data distribution, which can result in significant response time delays when these assumptions are not met. On the contrary, we focus on robust query optimization, emphasizing consistent query performance and applicability. Our presentation follows the general select-project-join query pattern, representing the fundamental stages of analytical query processing. To support arbitrary data types and complex filter expressions in the select stage, a novel sampling-based selectivity estimator is developed. Our approach exploits information from filter subexpressions and estimates correlations that are not captured by existing sampling-based methods. We demonstrate improved estimation accuracy and query execution time. Further, to minimize the runtime overhead of sampling, we propose new techniques that exploit access patterns and auxiliary database objects such as indices. For the join stage, we introduce a robust optimization approach by developing an upper-bound join enumeration strategy that connects accurate filter selectivity estimates –e.g., using our sampling-based approach– to join ordering. We demonstrate that join orders based on our upper-bound join ordering strategy achieve more consistent performance and faster workload execution on state-of-the-art database systems. However, besides identifying good logical join orders, it is crucial to determine appropriate physical join operators before query plan execution. To understand the importance of fine-grained physical operator selections, we exhaustively execute fixed join orders with all possible operator combinations. This analysis reveals that none of the investigated query optimizers fully reaches the potential of optimal operator decisions. Based on these insights and to achieve fine-grained operator selections for the previously determined join orders, the thesis presents a lightweight learning-based physical execution plan refinement component called. We show that this refinement component consistently outperforms existing approaches for physical operator selection while enabling a novel two-stage optimizer design. We conclude the thesis by providing a framework for the two-stage optimizer design that allows users to modify, replicate, and further analyze the concepts discussed throughout this thesis.:1 INTRODUCTION 1.1 Analytical Query Processing . . . . . . . . . . . . . . . . . . . 12 1.2 Select-Project-Join Queries . . . . . . . . . . . . . . . . . . . 13 1.3 Basics of SPJ Query Optimization . . . . . . . . . . . . . . . . . 14 1.3.1 Plan Enumeration . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.2 Cost Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3.3 Cardinality Estimation . . . . . . . . . . . . . . . . . . . . . 15 1.4 Robust SPJ Query Optimization . . . . . . . . . . . . . . . . . . 16 1.4.1 Tail Latency Root Cause Analysis . . . . . . . . . . . . . . . . 17 1.4.2 Tenets of Robust Query Optimization . . . . . . . . . . . . . . 19 1.5 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 SELECT (-PROJECT) STAGE 2.1 Sampling for Selectivity Estimation . . . . . . . . . . . . . . . 24 2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.1 Combined Selectivity Estimation (CSE) . . . . . . . . . . . . . 29 2.2.2 Kernel Density Estimator . . . . . . . . . . . . . . . . . . . . 31 2.2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3 Beta Estimator for 0-Tuple-Situations . . . . . . . . . . . . . . 33 2.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.2 Beta Distribution in Non-0-TS . . . . . . . . . . . . . . . . . 35 2.3.3 Parameter Estimation in 0-TS . . . . . . . . . . . . . . . . . . 37 2.3.4 Selectivity Estimation and Predicate Ordering . . . . . . . . . 39 2.3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.4 Customized Sampling Techniques . . . . . . . . . . . . . . . . . . 53 2.4.1 Focused Sampling . . . . . . . . . . . . . . . . . . . . . . . . 54 2.4.2 Conditional Sampling . . . . . . . . . . . . . . . . . . . . . . 56 2.4.3 Zone Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3 JOIN STAGE: LOGICAL ENUMERATION 3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.1.1 Point Estimates . . . . . . . . . . . . . . . . . . . . . . . . 63 3.1.2 Join Cardinality Upper Bound . . . . . . . . . . . . . . . . . . 64 3.2 Upper Bound Join Enumeration with Synopsis (UES) . . . . . . . . . 66 3.2.1 U-Block: Simple Upper Bound for Joins . . . . . . . . . . . . . 67 3.2.2 E-Block: Customized Enumeration Scheme . . . . . . . . . . . . . 68 3.2.3 UES Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.3.1 General Performance . . . . . . . . . . . . . . . . . . . . . . 72 3.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4 JOIN STAGE: PHYSICAL OPERATOR SELECTION 4.1 Operator Selection vs Join Ordering . . . . . . . . . . . . . . . 77 4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.1 Adaptive Query Processing . . . . . . . . . . . . . . . . . . . 80 4.2.2 Bandit Optimizer (Bao) . . . . . . . . . . . . . . . . . . . . . 81 4.3 TONIC: Learned Physical Join Operator Selection . . . . . . . . . 82 4.3.1 Query Execution Plan Synopsis (QEP-S) . . . . . . . . . . . . . 83 4.3.2 QEP-S Life-Cycle . . . . . . . . . . . . . . . . . . . . . . . . 84 4.3.3 QEP-S Design Considerations . . . . . . . . . . . . . . . . . . 87 4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4.1 Performance Factors . . . . . . . . . . . . . . . . . . . . . . 90 4.4.2 Rate of Improvement . . . . . . . . . . . . . . . . . . . . . . 92 4.4.3 Data Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.4.4 TONIC - Runtime Traits . . . . . . . . . . . . . . . . . . . . . 97 4.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5 TWO-STAGE OPTIMIZER FRAMEWORK 5.1 Upper-Bound-Driven Join Ordering Component . . . . . . . . . . . . 101 5.2 Physical Operator Selection Component . . . . . . . . . . . . . . 103 5.3 Example Query Optimization . . . . . . . . . . . . . . . . . . . . 103 6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 A APPENDIX A.1 Basics of Query Execution . . . . . . . . . . . . . . . . . . . . 123 A.2 Why Q? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 A.3 0-TS Proof of Unbiased Estimate . . . . . . . . . . . . . . . . . 125 A.4 UES Upper Bound Property . . . . . . . . . . . . . . . . . . . . . 127 A.5 TONIC – Selectivity-Aware Branching . . . . . . . . . . . . . . . 128 A.6 TONIC – Sequences of Query Execution . . . . . . . . . . . . . . . 129

Page generated in 0.1485 seconds