Spelling suggestions: "subject:"selfassembled monolayer (SAM)"" "subject:"selfassembled onolayer (SAM)""
1 |
The Development of Photosensitive Surfaces to Control Cell Adhesion and Form Cell PatternsCheng, Nan 13 September 2012 (has links)
Cell adhesion is the first step of cell response to materials and the extracellular matrix (ECM), and is essential to all cell behaviours such as cell proliferation, differentiation, migration and apoptosis for anchor-dependent cells. Therefore, studies of cell attachment have important implications to control and study cell behaviours. During many developed techniques for cell attachment, the manipulation of surface chemistry is a very important method to control initial cell attachment. To control cell adhesion on a two-dimensional surface is a simple model to study cell behaviours, and is a fundamental topic for cell biology, tissue engineering, and the development of biosensors. From the engineering point of view, the preparation of a material with controllable surface chemistry can help studies of cell behaviours and help scientists understand how surface features and chemistry influence cell behaviours. During the fabrication, the challenge is to create a surface with heterogeneous surface properties in the micro scale and subsequently to guide cell initial adhesion. In order to control cell adhesion in a spatial and temporal manner, a photochemical method to control surface chemistry was employed to control the surface property for cell adhesion in this project. Two photocleavable derivatives of the nitrobenzyl group were tried on two types of surfaces: a model self-assembled monolayer (SAM) with alkanethiol-gold surface and biodegradable chitosan. Reactive functional groups on two different surfaces can be inactivated by covalent binding with these photocleavable molecules, and light can be further introduced into the system as a stimulus to recover their reactivity. By simply applying a photomask with diffe
|
2 |
Adsorption of molecular thin films on metal and metal oxide surfacesBesharat, Zahra January 2016 (has links)
Metal and metal oxides are widely used in industry, and to optimize their performance their surfaces are commonly functionalized by the formation of thin films. Self-assembled monolayers (SAMs) are deposited on metals or metal oxides either from solution or by gas deposition. Thiols with polar terminal groups are utilized for creating the responsive surfaces which can interact electrostatically with other adsorbates. Surface charge effects wetting and adhesion, and many other surface properties. Polar terminal groups in thiols could be used to modify these factors. Mixed SAMs can provide more flexible surfaces, and could change the resulting surface properties under the influence of factors such as pH, temperature, and photo-illumination. Therefore, in order to control these phenomena by mixed polar-terminated thiols, it is necessary to understand the composition and conformation of the mixed SAMs and their response to these factors. In this work, mixtures of thiols with carboxylic and amino terminal groups were studied. Carboxylic and amino terminal groups of thiol interact with each other via hydrogen bonding in solution and form a complex. Complexes adsorb to the surface in non-conventional orientations. Unmixed SAMs from each type, either carboxylic terminated thiols or amino terminated thiols are in standing up orientation while SAMs from complexes are in an axially in-plane orientation. Selenol is an alternative to replace thiols for particular applications such as contact with biological matter which has a better compatibility with selenol than sulfur. However, the Se-C bond is weaker than the S-C bond which limits the application of selenol. Understanding the selenol adsorption mechanism on gold surfaces could shed some light on Se-C cleavage and so is investigated in this work. Se-C cleavage happens in the low coverage areas on the step since atoms at steps have lower coordination making them more reactive than atoms on the terraces. Another area where the self-assembly of molecules is of importance is for dye sensitized solar cells, which are based on the adsorption of the dye onto metal oxides surfaces such as TiO2.The interface between the SAM of dye and the substrate is an important factor to consider when designing dyes and surfaces in dye sensitized solar cells (DSSCs). The quality of the self-assembled monolayers of the dye on the TiO2 surface has a critical influence on the efficiency of the DSSCs. Creation of just a monolayer of dye on the surface could lead to an efficient current of photo-excited electrons to the TiO2 and degeneration of the dye by redox. This work, T-PAC dye showed island growth with some ad-layer that is not in contact with the surface, whereas the MP13 dye adsorption is laminar growth. Cuprite (Cu2O) is the initial and most common corrosion product for copper under atmospheric conditions. Copper could be a good replacement for noble metal as catalysts for methanol dehydrogenation. Knowledge about the structure of Cu2O(100) and Cu2O(111) surfaces could be used to obtain a deeper understanding of methanol dehydrogenation mechanisms with respect to adsorption sites on the surfaces. In this work, a detailed study was done of Cu2O(100) surface which revealed the possible surface structures as the result of different preparation conditions. Studies of the structure of Cu2O(100) and Cu2O(111) surfaces show that Cu2O(100) has a comparatively stable surface and reduces surface reactivity. As a consequence, dehydrogenation of methanol is more efficient on the Cu2O(111) surface. The hydrogen produced from methanol dehydrogenation is stored in oxygen adatom sites on both surfaces. / <p>QC 20161107</p>
|
3 |
The Development of Photosensitive Surfaces to Control Cell Adhesion and Form Cell PatternsCheng, Nan 13 September 2012 (has links)
Cell adhesion is the first step of cell response to materials and the extracellular matrix (ECM), and is essential to all cell behaviours such as cell proliferation, differentiation, migration and apoptosis for anchor-dependent cells. Therefore, studies of cell attachment have important implications to control and study cell behaviours. During many developed techniques for cell attachment, the manipulation of surface chemistry is a very important method to control initial cell attachment. To control cell adhesion on a two-dimensional surface is a simple model to study cell behaviours, and is a fundamental topic for cell biology, tissue engineering, and the development of biosensors. From the engineering point of view, the preparation of a material with controllable surface chemistry can help studies of cell behaviours and help scientists understand how surface features and chemistry influence cell behaviours. During the fabrication, the challenge is to create a surface with heterogeneous surface properties in the micro scale and subsequently to guide cell initial adhesion. In order to control cell adhesion in a spatial and temporal manner, a photochemical method to control surface chemistry was employed to control the surface property for cell adhesion in this project. Two photocleavable derivatives of the nitrobenzyl group were tried on two types of surfaces: a model self-assembled monolayer (SAM) with alkanethiol-gold surface and biodegradable chitosan. Reactive functional groups on two different surfaces can be inactivated by covalent binding with these photocleavable molecules, and light can be further introduced into the system as a stimulus to recover their reactivity. By simply applying a photomask with diffe
|
4 |
The Development of Photosensitive Surfaces to Control Cell Adhesion and Form Cell PatternsCheng, Nan January 2012 (has links)
Cell adhesion is the first step of cell response to materials and the extracellular matrix (ECM), and is essential to all cell behaviours such as cell proliferation, differentiation, migration and apoptosis for anchor-dependent cells. Therefore, studies of cell attachment have important implications to control and study cell behaviours. During many developed techniques for cell attachment, the manipulation of surface chemistry is a very important method to control initial cell attachment. To control cell adhesion on a two-dimensional surface is a simple model to study cell behaviours, and is a fundamental topic for cell biology, tissue engineering, and the development of biosensors. From the engineering point of view, the preparation of a material with controllable surface chemistry can help studies of cell behaviours and help scientists understand how surface features and chemistry influence cell behaviours. During the fabrication, the challenge is to create a surface with heterogeneous surface properties in the micro scale and subsequently to guide cell initial adhesion. In order to control cell adhesion in a spatial and temporal manner, a photochemical method to control surface chemistry was employed to control the surface property for cell adhesion in this project. Two photocleavable derivatives of the nitrobenzyl group were tried on two types of surfaces: a model self-assembled monolayer (SAM) with alkanethiol-gold surface and biodegradable chitosan. Reactive functional groups on two different surfaces can be inactivated by covalent binding with these photocleavable molecules, and light can be further introduced into the system as a stimulus to recover their reactivity. By simply applying a photomask with diffe
|
5 |
Development of amperometric biosensor with cyclopentadienylruthenium (II) thiolato schiff base self-assembled monolayer (SAM) on goldTicha, Lawrence Awa January 2007 (has links)
A novel cyclopentadienylruthenium(II) thiolato Schiff base, [Ru(SC6H4NC(H)C6H4OCH2CH2SMe)(&eta / 5-C2H5]2 was synthesized and deposited as a selfassembled monolayer (SAM) on a gold electrode. Effective electronic communication
between the Ru(II) centers and the gold electrode was established by electrostatically cycling the Shiff base-doped gold electrode in 0.1 M NaOH from -200 mV to +600 mV. The SAMmodified gold electrode (Au/SAM) exhibited quasi-reversible electrochemistry. The integrity of this electro-catalytic SAM, with respect to its ability to block and electro-catalyze certain Faradaic processes, was interrogated using Cyclic and Osteryoung Square Wave voltammetric experiments. The formal potential, E0', varied with pH to give a slope of about - 34 mV pH-1. The surface concentration, &Gamma / , of the ruthenium redox centers was found to be 1.591 x 10-11 mol cm-2. By electrostatically doping the Au/SAM/Horseradish peroxidase at an applied potential of +700 mV vs Ag/AgCl, a biosensor was produced for the amperometric analysis of hydrogen peroxide, cumene hydroperoxide and tert-butylhydroperoxide. The electrocatalytic-type biosensors displayed typical Michaelis-Menten kinetics with their limits of detection of 6.45 &mu / M, 6.92 &mu / M and 7.01 &mu / M for hydrogen peroxide, cumene hydroperoxide and tert-butylhydroperoxide respectively.
|
6 |
Development of amperometric biosensor with cyclopentadienylruthenium (II) thiolato schiff base self-assembled monolayer (SAM) on goldTicha, Lawrence Awa January 2007 (has links)
A novel cyclopentadienylruthenium(II) thiolato Schiff base, [Ru(SC6H4NC(H)C6H4OCH2CH2SMe)(&eta / 5-C2H5]2 was synthesized and deposited as a selfassembled monolayer (SAM) on a gold electrode. Effective electronic communication
between the Ru(II) centers and the gold electrode was established by electrostatically cycling the Shiff base-doped gold electrode in 0.1 M NaOH from -200 mV to +600 mV. The SAMmodified gold electrode (Au/SAM) exhibited quasi-reversible electrochemistry. The integrity of this electro-catalytic SAM, with respect to its ability to block and electro-catalyze certain Faradaic processes, was interrogated using Cyclic and Osteryoung Square Wave voltammetric experiments. The formal potential, E0', varied with pH to give a slope of about - 34 mV pH-1. The surface concentration, &Gamma / , of the ruthenium redox centers was found to be 1.591 x 10-11 mol cm-2. By electrostatically doping the Au/SAM/Horseradish peroxidase at an applied potential of +700 mV vs Ag/AgCl, a biosensor was produced for the amperometric analysis of hydrogen peroxide, cumene hydroperoxide and tert-butylhydroperoxide. The electrocatalytic-type biosensors displayed typical Michaelis-Menten kinetics with their limits of detection of 6.45 &mu / M, 6.92 &mu / M and 7.01 &mu / M for hydrogen peroxide, cumene hydroperoxide and tert-butylhydroperoxide respectively.
|
7 |
GOLD NANOSPHERES AND GOLD NANORODS AS LOCALIZED SURFACE PLASMON RESONANCE SENSORSMatcheswala, Akil Mannan 01 January 2010 (has links)
A novel localized surface plasmon resonance (LSPR) sensor that differentiates between background refractive index changes and surface-binding of a target analyte (e.g. a target molecule, protein, or bacterium) is presented. Standard, single channel LSPR sensors cannot differentiate these two effects as their design allows only one mode to be coupled. This novel technique uses two surface plasmon modes to simultaneously measure surface binding and solution refractive index changes. This increases the sensitivity of the sensor.
Different channels or modes can be created in sensors with the introduction of gold nanospheres or gold nanorods that act as receptor mechanisms. Once immobilization was achieved on gold nanospheres, the technique was optimized to achieve the same immobilization for gold nanorods to get the expected dual mode spectrum. Intricate fabrication methods are illustrated with using chemically terminated self assembled monolayers. Then the fabrication process advances from chemically silanized nanoparticles, on to specific and systematic patterns generated with the use of Electron Beam Lithography.
Comparisons are made within the different methods used, and guidelines are set to create possible room for improvement. Some methods implemented failed, but there was a lot to learn from these unsuccessful outcomes. Finally, the applications of the dual mode sensor are introduced, and current venues where the sensors can be used in chemical and biological settings are discussed.
|
8 |
Development of amperometric biosensor with Cyclopentadienylruthenium(ii) thiolato schiff base selfassembled Monolayer (sam) on goldTicha, Lawrence Awa 11 1900 (has links)
A novel cyclopentadienylruthenium(II) thiolato Schiff base,[Ru(SC6H4NC(H)C6H4OCH2CH2SMe)(η5-C2H5]2 was synthesized and deposited as a selfassembled monolayer (SAM) on a gold electrode. Effective electronic communication between the Ru(II) centers and the gold electrode was established by electrostatically cycling the Shiff base-doped gold electrode in 0.1 M NaOH from -200 mV to +600 mV. The SAMmodified gold electrode (Au/SAM) exhibited quasi-reversible electrochemistry. The integrity of this electro-catalytic SAM, with respect to its ability to block and electro-catalyze certain Faradaic processes, was interrogated using Cyclic and Osteryoung Square Wave voltammetric experiments. The formal potential, E0', varied with pH to give a slope of about - 34 mV pH-1. The surface concentration, Γ, of the ruthenium redox centers was found to be 1.591 x 10-11 mol cm-2. By electrostatically doping the Au/SAM/Horseradish peroxidase at an applied potential of +700 mV vs Ag/AgCl, a biosensor was produced for the amperometric analysis of hydrogen peroxide, cumene hydroperoxide and tert-butylhydroperoxide. The electrocatalytic-type biosensors displayed typical Michaelis-Menten kinetics with their limits of detection of 6.45 μM, 6.92 μM and 7.01 μM for hydrogen peroxide, cumene
hydroperoxide and tert-butylhydroperoxide respectively / Magister Scientiae - MSc
|
9 |
Development of amperometric biosensor with cyclopentadienylruthenium (II) thiolato schiff base self-assembled monolayer (SAM) on goldTicha, Lawrence Awa January 2007 (has links)
Magister Scientiae - MSc / A novel cyclopentadienylruthenium(II) thiolato Schiff base, [Ru(SC6H4NC(H)C6H4OCH2CH2SMe)(η5-C2H5]2 was synthesized and deposited as a selfassembled monolayer (SAM) on a gold electrode. Effective electronic communication between the Ru(II) centers and the gold electrode was established by electrostatically cycling the Shiff base-doped gold electrode in 0.1 M NaOH from -200 mV to +600 mV. The SAMmodified gold electrode (Au/SAM) exhibited quasi-reversible electrochemistry. The integrity of this electro-catalytic SAM, with respect to its ability to block and electro-catalyze certain Faradaic processes, was interrogated using Cyclic and Osteryoung Square Wave voltammetric experiments. The formal potential, E0', varied with pH to give a slope of about - 34 mV pH-1. The surface concentration, Γ, of the ruthenium redox centers was found to be 1.591 x 10-11 mol cm-2. By electrostatically doping the Au/SAM/Horseradish peroxidase at an applied potential of +700 mV vs Ag/AgCl, a biosensor was produced for the amperometric analysis of hydrogen peroxide, cumene hydroperoxide and tert-butylhydroperoxide. The electrocatalytic-type biosensors displayed typical Michaelis-Menten kinetics with their limits of detection of 6.45 M, 6.92 M and 7.01 M for hydrogen peroxide, cumene hydroperoxide and tert-butylhydroperoxide respectively. / South Africa
|
10 |
Structure, Stability And Interfacial Studies Of Self Assembled Monolayers On Gold And Silver SurfacesSuriyanarayanan, Subramanian 11 1900 (has links)
Nanostructured materials play a vital role in almost all aspects of science and technology in the 21st century. The materials include nanoparticles, nanofilms, biological membranes etc. whose physicochemical properties are size-dependent. Thin films have wide range of applications in various branches of science. One of the efficient methods to form miniaturized structures for device applications is to fabricate nanostructured films on different substrates. Surfactant assembly on metallic and non-metallic surfaces based on self assembly and Langmuir-Blodgett technique offers a unique way to form thin films at molecular levels. The process of formation of unimolecular assemblies gives the flexibility of tuning the properties of underlying substrates for various applications including wetting characteristics, lubrication, passivation, mimicking biological phenomena etc. Towards this direction, self assembled monolayers (SAMs) of alkanethiols on gold and silver surfaces have been studied comprehensively for the past two decades. The reported literature on short chain length thiol-based monolayers is however, limited since the formation using conventional methods yield poor quality monolayers. The short chain length monolayers are useful in various applications like tribology, layer-by-layer assemblies, biosensors etc. Hence, it is essential to reproducibly form SAMs of various chain lengths and understand their properties.
The present study is related to the formation of SAMs of alkanethiols and diselenides on gold and silver surfaces to form ordered and well-oriented monolayers. Monolayers of varying chain lengths (CH3(CH2)nSH where n = 3, 5, 7, 9, 11, 15) have been formed on gold and silver surfaces using different methods, (1) adsorption from neat thiols; (2) adsorption under electrochemical control and (3) adsorption from alcoholic solutions of the thiols. The characteristics features of the SAMs have been followed based on three different aspects, (i) structure and stability of the methylene groups (ii) interfacial characteristics involving the end group and the solvent and (iii) metal-head group interactions. The structure and stability of the monolayers have been followed based on vibrational spectroscopy and electrochemistry under different environment including thermal perturbations. The stability of the SAMs at different temperatures and subsequent changes associated with the orientation / packing has been monitored both in the dry state using reflection absorption infrared spectroscopy (RAIRS) and under electrochemical conditions using cyclic voltammetry and impedance analysis. Monolayers adsorbed from neat thiols show superior quality in terms of stability and structural arrangement. Short chain thiols with n = 3, 5, 7 show substantial stability when the adsorption is carried out from neat thiols. Figure 1 shows the RAIR spectra of hexanethiol SAM on gold adsorbed by three different procedures. Monolayers adsorbed under potential control behave very similar to the monolayers adsorbed from neat thiol as for as stability and structural orientation are concerned. Monolayers prepared using conventional methods of adsorption from alcoholic solutions are of inferior quality in terms of stability and arrangement especially for the short chain lengths. This is likely to be due to the fact that monolayers prepared using conventional methods may have intercalated solvent molecules within the monolayer assembly that degrade the integrity of the SAM leading to poor quality. The blocking characteristics of the monolayers for diffusing redox couple have been followed by determining the heterogeneous electron transfer rate constant using electrochemical techniques. The spectroscopic data and the electrochemical data follow similar trend indicating the superior quality of monolayer adsorbed from neat thiol in terms of stability as compared to conventionally prepared monolayers.
Figure 1. RAIR spectra of hexanethiol-SAMs on Au(111) surface at 25C. The monolayers are formed by adsorption (A) from neat thiol (B) under potential control and (C) from alcoholic solution of the thiol.
Wavenumber (cm-1)
The interfacial characteristics of the monolayers (effect of end group functionality on the solvent properties) have been monitored on the basis of capacitance, contact angle and atomic force microscopy- measurements. Well-organized monolayers behave like good capacitors with relatively low values of double layer capacitance in presence of a liquid electrolyte as compared to the expected values based on known thickness and dielectric constant of the SAMs. This behavior can be explained by invoking the depletion of water density at the methyl terminated SAM-water interface where the solvent properties are different from that of bulk. Variation of one such property, dielectric constant, has been mapped using force measurement based on AFM. Dielectric constant of water changes from the bulk value of 78 to a low value as given in figure 2. This cross-over occurs within a span of 1-3 nm depending on the chain length of the thiol. Of the three procedures used, the ones based on the use of neat thiol and electrochemical adsorption result in well-oriented alkyl chains followed by highly oriented methyl terminal groups. This is responsible for the high hydrophobic nature of the interface and the subsequent observation of interfacial water properties. The SAMs prepared from ethanol fail to show the hydrophobic effects. Hydrophilic monolayers (NH2 terminated monolayers) fail to show depletion of water density at the interface indicating the importance of end group functionality in altering the interfacial characteristics of the monolayer.
Figure 2. Spatial variation of dielectric permittivity of water at the hexanethiol SAM - water interface. The SAM is formed on gold (111) surface; (a) from ethanolic solution of the thiol (b) under electrochemical control (c) from neat thiol. The origin on the x-axis is the position of the methyl groups of SAM and the direction towards right side is in to the bulk water.
The well-oriented SAMs have been used to follow the adsorption of a biopolymer. Zein protein is a prolamine of maize and is projected to be a biocompatible coating for food products and food containers. Hence, it is essential to prepare impermeable coatings of zein with different surface wetting properties. The adsorption of zein on highly ordered SAMs with hydrophobic or hydrophilic end group functionality has been studied and the orientation of the protein followed using spectroscopy, microscopy and electrochemistry. It is observed that zein shows higher affinity towards hydrophilic than hydrophobic surfaces with small foot print size on the
Figure 3. Orientation of zein protein on hydrophilic and hydrophobic SAM as deciphered from the experimental data.
hydrophilic surface resulting in large surface coverage. Figure 3 shows the schematics of zein deposits on hydrophilic and hydrophobic SAM surfaces determined based on spectroscopy, quartz crystal microbalance and electrochemical studies. The AFM shows cylindrical, rod-like and disc-like features of zein on hydrophilic surfaces that form the base units for the growth of cylindrical structures of zein.
The published literature on the studies on SAMs on silver surfaces reveals that there is no consensus on the structure of the monolayers on silver. This may be due to the difficulty in getting pristine oxide-free surfaces in the case of silver and this is likely to affect the monolayer quality. Hence, it is decided to prepare SAMs of alkanethiols on silver and study their characteristics. Subtle differences between the monolayers adsorbed from neat thiol and from alcoholic solutions of thiols have been observed in terms of stability and permeability. Atomic force microscopic studies illustrate the presence of depletion of water at the SAM-aqueous interface.
Diselenide-based monolayers have been formed on gold to understand the head group-substrate interactions on the monolayer properties. The disorder observed on short chain diselenide-based monolayers formed from alcoholic solutions can be eliminated by adsorption from neat compounds as described for the thiols.
A preliminary account on the stability of SAMs under hydrodynamic conditions has been given based on rotating disc electrode voltammetry. It is observed that the SAMs get well-ordered when the electrode is rotated at a fast rate leading to the hypothesis that the monolayer assembly gets annealed as a function of the rotation rate.
The thesis is planned as follows: Chapter 1 gives general introduction about organic thin films with particular emphasis on self-assembled monolayers on gold and silver, their characteristics in terms of stability, interfacial properties and adsorption behaviour. Chapter 2 deals with the experimental methodologies and schematics used for the preparation and characterization of the monolayers. Chapter 3 is on the contribution of alkyl spacer to the stability of the monolayers studied using spectroscopy and electrochemistry. Chapter 4 deals with the interfacial properties of the SAMs in presence of aqueous medium. In order to emphasize the importance of the terminal functional groups, adsorption of zein has been demonstrated on surfaces of controlled wettablity. Chapter 5 explains the formation and stability of monolayers of short and long chain alkyl diselenides on gold surfaces. Chapter 6 gives the structural and interfacial characteristics of alkanethiol monolayers on silver surfaces. The stability and subsequent changes of alkanethiol monolayers under hydrodynamic conditions has been discussed in the appendix section.(For fig pl refer pdf file.)
|
Page generated in 0.0412 seconds