• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structure, Stability And Interfacial Studies Of Self Assembled Monolayers On Gold And Silver Surfaces

Suriyanarayanan, Subramanian 11 1900 (has links)
Nanostructured materials play a vital role in almost all aspects of science and technology in the 21st century. The materials include nanoparticles, nanofilms, biological membranes etc. whose physicochemical properties are size-dependent. Thin films have wide range of applications in various branches of science. One of the efficient methods to form miniaturized structures for device applications is to fabricate nanostructured films on different substrates. Surfactant assembly on metallic and non-metallic surfaces based on self assembly and Langmuir-Blodgett technique offers a unique way to form thin films at molecular levels. The process of formation of unimolecular assemblies gives the flexibility of tuning the properties of underlying substrates for various applications including wetting characteristics, lubrication, passivation, mimicking biological phenomena etc. Towards this direction, self assembled monolayers (SAMs) of alkanethiols on gold and silver surfaces have been studied comprehensively for the past two decades. The reported literature on short chain length thiol-based monolayers is however, limited since the formation using conventional methods yield poor quality monolayers. The short chain length monolayers are useful in various applications like tribology, layer-by-layer assemblies, biosensors etc. Hence, it is essential to reproducibly form SAMs of various chain lengths and understand their properties. The present study is related to the formation of SAMs of alkanethiols and diselenides on gold and silver surfaces to form ordered and well-oriented monolayers. Monolayers of varying chain lengths (CH3(CH2)nSH where n = 3, 5, 7, 9, 11, 15) have been formed on gold and silver surfaces using different methods, (1) adsorption from neat thiols; (2) adsorption under electrochemical control and (3) adsorption from alcoholic solutions of the thiols. The characteristics features of the SAMs have been followed based on three different aspects, (i) structure and stability of the methylene groups (ii) interfacial characteristics involving the end group and the solvent and (iii) metal-head group interactions. The structure and stability of the monolayers have been followed based on vibrational spectroscopy and electrochemistry under different environment including thermal perturbations. The stability of the SAMs at different temperatures and subsequent changes associated with the orientation / packing has been monitored both in the dry state using reflection absorption infrared spectroscopy (RAIRS) and under electrochemical conditions using cyclic voltammetry and impedance analysis. Monolayers adsorbed from neat thiols show superior quality in terms of stability and structural arrangement. Short chain thiols with n = 3, 5, 7 show substantial stability when the adsorption is carried out from neat thiols. Figure 1 shows the RAIR spectra of hexanethiol SAM on gold adsorbed by three different procedures. Monolayers adsorbed under potential control behave very similar to the monolayers adsorbed from neat thiol as for as stability and structural orientation are concerned. Monolayers prepared using conventional methods of adsorption from alcoholic solutions are of inferior quality in terms of stability and arrangement especially for the short chain lengths. This is likely to be due to the fact that monolayers prepared using conventional methods may have intercalated solvent molecules within the monolayer assembly that degrade the integrity of the SAM leading to poor quality. The blocking characteristics of the monolayers for diffusing redox couple have been followed by determining the heterogeneous electron transfer rate constant using electrochemical techniques. The spectroscopic data and the electrochemical data follow similar trend indicating the superior quality of monolayer adsorbed from neat thiol in terms of stability as compared to conventionally prepared monolayers. Figure 1. RAIR spectra of hexanethiol-SAMs on Au(111) surface at 25C. The monolayers are formed by adsorption (A) from neat thiol (B) under potential control and (C) from alcoholic solution of the thiol. Wavenumber (cm-1) The interfacial characteristics of the monolayers (effect of end group functionality on the solvent properties) have been monitored on the basis of capacitance, contact angle and atomic force microscopy- measurements. Well-organized monolayers behave like good capacitors with relatively low values of double layer capacitance in presence of a liquid electrolyte as compared to the expected values based on known thickness and dielectric constant of the SAMs. This behavior can be explained by invoking the depletion of water density at the methyl terminated SAM-water interface where the solvent properties are different from that of bulk. Variation of one such property, dielectric constant, has been mapped using force measurement based on AFM. Dielectric constant of water changes from the bulk value of 78 to a low value as given in figure 2. This cross-over occurs within a span of 1-3 nm depending on the chain length of the thiol. Of the three procedures used, the ones based on the use of neat thiol and electrochemical adsorption result in well-oriented alkyl chains followed by highly oriented methyl terminal groups. This is responsible for the high hydrophobic nature of the interface and the subsequent observation of interfacial water properties. The SAMs prepared from ethanol fail to show the hydrophobic effects. Hydrophilic monolayers (NH2 terminated monolayers) fail to show depletion of water density at the interface indicating the importance of end group functionality in altering the interfacial characteristics of the monolayer. Figure 2. Spatial variation of dielectric permittivity of water at the hexanethiol SAM - water interface. The SAM is formed on gold (111) surface; (a) from ethanolic solution of the thiol (b) under electrochemical control (c) from neat thiol. The origin on the x-axis is the position of the methyl groups of SAM and the direction towards right side is in to the bulk water. The well-oriented SAMs have been used to follow the adsorption of a biopolymer. Zein protein is a prolamine of maize and is projected to be a biocompatible coating for food products and food containers. Hence, it is essential to prepare impermeable coatings of zein with different surface wetting properties. The adsorption of zein on highly ordered SAMs with hydrophobic or hydrophilic end group functionality has been studied and the orientation of the protein followed using spectroscopy, microscopy and electrochemistry. It is observed that zein shows higher affinity towards hydrophilic than hydrophobic surfaces with small foot print size on the Figure 3. Orientation of zein protein on hydrophilic and hydrophobic SAM as deciphered from the experimental data. hydrophilic surface resulting in large surface coverage. Figure 3 shows the schematics of zein deposits on hydrophilic and hydrophobic SAM surfaces determined based on spectroscopy, quartz crystal microbalance and electrochemical studies. The AFM shows cylindrical, rod-like and disc-like features of zein on hydrophilic surfaces that form the base units for the growth of cylindrical structures of zein. The published literature on the studies on SAMs on silver surfaces reveals that there is no consensus on the structure of the monolayers on silver. This may be due to the difficulty in getting pristine oxide-free surfaces in the case of silver and this is likely to affect the monolayer quality. Hence, it is decided to prepare SAMs of alkanethiols on silver and study their characteristics. Subtle differences between the monolayers adsorbed from neat thiol and from alcoholic solutions of thiols have been observed in terms of stability and permeability. Atomic force microscopic studies illustrate the presence of depletion of water at the SAM-aqueous interface. Diselenide-based monolayers have been formed on gold to understand the head group-substrate interactions on the monolayer properties. The disorder observed on short chain diselenide-based monolayers formed from alcoholic solutions can be eliminated by adsorption from neat compounds as described for the thiols. A preliminary account on the stability of SAMs under hydrodynamic conditions has been given based on rotating disc electrode voltammetry. It is observed that the SAMs get well-ordered when the electrode is rotated at a fast rate leading to the hypothesis that the monolayer assembly gets annealed as a function of the rotation rate. The thesis is planned as follows: Chapter 1 gives general introduction about organic thin films with particular emphasis on self-assembled monolayers on gold and silver, their characteristics in terms of stability, interfacial properties and adsorption behaviour. Chapter 2 deals with the experimental methodologies and schematics used for the preparation and characterization of the monolayers. Chapter 3 is on the contribution of alkyl spacer to the stability of the monolayers studied using spectroscopy and electrochemistry. Chapter 4 deals with the interfacial properties of the SAMs in presence of aqueous medium. In order to emphasize the importance of the terminal functional groups, adsorption of zein has been demonstrated on surfaces of controlled wettablity. Chapter 5 explains the formation and stability of monolayers of short and long chain alkyl diselenides on gold surfaces. Chapter 6 gives the structural and interfacial characteristics of alkanethiol monolayers on silver surfaces. The stability and subsequent changes of alkanethiol monolayers under hydrodynamic conditions has been discussed in the appendix section.(For fig pl refer pdf file.)
2

Design and characterization of gas-liquid microreactors / Design et caractérsation des micro-réacteurs gaz-liquide

Völkel, Norbert 04 December 2009 (has links)
Cette étude est dédiée à l'amélioration du design des microréacteurs gaz-liquide. Le terme de microréacteur correspond à des appareils composés de canaux dont les dimensions sont de l’ordre de quelques dizaines à quelques centaines de microns. Grâce à la valeur importante du ratio surface/volume, ces appareils constituent une issue prometteuse pour contrôler les réactions rapides fortement exothermiques, souvent rencontrées en chimie fine et pharmaceutique. Dans le cas des systèmes gaz-liquide, on peut citer par exemple les réactions de fluoration, d’hydrogénation ou d’oxydation. Comparés à des appareils conventionnels, les microréacteurs permettent de supprimer le risque d’apparition de points chauds, et d’envisager le fonctionnement dans des conditions plus critiques, par exemple avec des concentrations de réactifs plus élevées. En même temps, la sélectivité peut être augmentée et les coûts opératoires diminués. Ainsi, les technologies de microréacteurs s’inscrivent bien dans les nouveaux challenges auxquels l'industrie chimique est confrontée ; on peut citer en particulier la réduction de la consommation énergétique et la gestion des stocks de produits intermédiaires. Les principaux phénomènes qui doivent être étudiés lors de la conception d’un microréacteur sont le transfert de matière et le transfert thermique. Dans les systèmes diphasiques, ces transferts sont fortement influencés par la nature des écoulements, et l'hydrodynamique joue donc un rôle central. Par conséquent, nous avons focalisé notre travail sur l’hydrodynamique de l’écoulement diphasique dans les microcanaux et sur les couplages constatés avec le transfert de masse. Dans ce contexte, nous nous sommes dans un premier temps intéressés aux régimes d’écoulement et aux paramètres contrôlant la transition entre les différents régimes. Au vu des capacités de transfert de matière et à la flexibilité offerte en terme de conditions opératoires, le régime de Taylor semble le plus prometteur pour mettre en œuvre des réactions rapides fortement exothermiques et limitées par le transfert de matière. Ce régime d'écoulement est caractérisé par des bulles allongées entourées par un film liquide et séparées les unes des autres par une poche liquide. En plus du fait que ce régime est accessible à partir d’une large gamme de débits gazeux et liquide, l'aire interfaciale développée est assez élevée, et les mouvements de recirculation du liquide induits au sein de chaque poche sont supposés améliorer le transport des molécules entre la zone interfaciale et le liquide. A partir d'une étude de l’hydrodynamique locale d’un écoulement de Taylor, il s’est avéré que la perte de charge et le transfert de matière sont contrôlés par la vitesse des bulles, et la longueur des bulles et des poches. Dans l’étape suivante, nous avons étudié l'influence des paramètres de fonctionnement sur ces caractéristiques de l’écoulement. Une première phase de notre travail expérimental a porté sur la formation des bulles et des poches et la mesure des champs de vitesse de la phase liquide dans des microcanaux de section rectangulaire. Nous avons également pris en compte le phénomène de démouillage, qui joue un rôle important au niveau de la perte de charge et du transfert de matière. Des mesures du coefficient de transfert de matière (kLa) ont été réalisées tandis que l'écoulement associé était enregistré. Les vitesses de bulles, longueurs de bulles et de poches, ainsi que les caractéristiques issues de l’exploitation des champs de vitesse précédemment obtenus, ont été utilisées afin de proposer un modèle modifié pour la prédiction du kLa dans des microcanaux de section rectangulaire. En mettant en évidence l'influence du design du microcanal sur l’hydrodynamique et le transfert de matière, notre travail apporte une contribution importante dans le contrôle en microréacteur des réactions rapides fortement exothermiques et limitées par le transfert de matière. De plus, ce travail a permis d'identifier certaines lacunes en termes de connaissance, ce qui devrait pouvoir constituer l'objet de futures recherches. / The present project deals with the improvement of the design of gas-liquid microreactors. The term microreactor characterizes devices composed of channels that have dimensions in the several tens to several hundreds of microns. Due to their increased surface to volume ratios these devices are a promising way to control fast and highly exothermic reactions, often employed in the production of fine chemicals and pharmaceutical compounds. In the case of gas-liquid systems, these are for example direct fluorination, hydrogenation or oxidation reactions. Compared to conventional equipment microreactors offer the possibility to suppress hot spots and to operate hazardous reaction systems at increased reactant concentrations. Thereby selectivity may be increased and operating costs decreased. In this manner microreaction technology well fits in the challenges the chemical industry is continuously confronted to, which are amongst others the reduction of energy consumption and better feedstock utilization. The main topics which have to be considered with respect to the design of gasliquid μ-reactors are heat and mass transfer. In two phase systems both are strongly influenced by the nature of the flow and thus hydrodynamics play a central role. Consequently we focused our work on the hydrodynamics of the two-phase flow in microchannels and the description of the inter-linkage to gas-liquid mass transfer. In this context we were initially concerned with the topic of gas-liquid flow regimes and the main parameters prescribing flow pattern transitions. From a comparison of flow patterns with respect to their mass transfer capacity, as well as the flexibility offered with respect to operating conditions, the Taylor flow pattern appears to be the most promising flow characteristic for performing fast, highly exothermic and mass transfer limited reactions. This flow pattern is characterized by elongated bubbles surrounded by a liquid film and separated from each other by liquid slugs. In addition to the fact that this flow regime is accessible within a large range of gas and liquid flow rates, and has a relatively high specific interfacial area, Taylor flow features a recirculation motion within the liquid slugs, which is generally assumed to increase molecular transport between the gas-liquid interface and the bulk of the liquid phase. From a closer look on the local hydrodynamics of Taylor flow, including the fundamentals of bubble transport and the description of the recirculation flow within the liquid phase, it turned out that two-phase pressure drop and gas-liquid mass transfer are governed by the bubble velocity, bubble lengths and slug lengths. In the following step we have dealt with the prediction of these key hydrodynamic parameters. In this connection the first part of our experimental study was concerned with the investigation of the formation of bubbles and slugs and the characterization of the liquid phase velocity field in microchannels of rectangular cross-section. In addition we also addressed the phenomenon of film dewetting, which plays an important rôle concerning pressure drop and mass-transfer in Taylor flow. In the second part we focused on the prediction of gas-liquid mass transfer in Taylor flow. Measurements of the volumetric liquid side mass transfer coefficient (kLa-value) were conducted and the related two-phase flow was recorded. The measured bubble velocities, bubble lengths and slug lengths, as well as the findings previously obtained from the characterization of the velocity field were used to set-up a modified model for the prediction of kLa-values in μ-channels of rectangular cross-section. Describing the interaction of channel design hydrodynamics and mass transfer our work thus provides an important contribution towards the control of the operation of fast, highly exothermic and mass transfer limited gas-liquid reactions in microchannels. In addition it enabled us to identify gaps of knowledge, whose investigation should be items of further research.

Page generated in 0.0898 seconds