• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 709
  • 136
  • 92
  • 25
  • 25
  • 14
  • 13
  • 8
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 1281
  • 1281
  • 384
  • 216
  • 193
  • 156
  • 141
  • 132
  • 131
  • 127
  • 122
  • 122
  • 117
  • 115
  • 108
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Sensitivity of Block Copolymer Self-Assembly to the Modification of a Single Monomer

Rehel, Desiree January 2024 (has links)
In this project, the sensitivity of the phase behaviour of AB diblock copolymers to the addition a single C-monomer is investigated using self-consistent mean-field theory. The reference diblock copolymers are composed of the minority A block with N_A = 12 monomers and the majority B block with N_B monomers. The blocks are mutually repulsive and their interaction is characterised by χ_{ij} and acts over range σ_{ij}, where i and j represent the monomer species. When a C-monomer is added to the junction of the diblock copolymers, we observe a notable shift of the phase boundaries to the larger NB and smaller χ_{AB}. The shift to larger NB is due to an increased polymer stretching. When the C-monomers is nearly-neutral, the shift does not strongly depend on the interaction strength. Similarly, the shift is not visibly affected by changing σ_{AC} and σ_{BC}. However, when the the strength of the interaction is selective such that χ_{AC} = χ_{AB} + α and χ_{BC} = χ_{AB} − α, the shift size decreases with increasing α. Conversely, when the selective C-monomer is added to the majority end, the phase boundaries are shifted to the smaller N_B, with the smallest α giving the largest shift. The shifts can be generically understood to be cause by the interplay between the changes in the interfacial tension and polymer stretching due to the C-monomer. These results demonstrate sensitivity of phase behaviour of AB diblock copolymers to the addition of a C-monomer and may provide a useful link between experiment and theory. / Thesis / Master of Science (MSc)
332

Self-Assembly: Synthesis and Complexation of Crown Ethers and Cryptands with R2-NH2 Ions

Bryant, William Stephen 09 September 1999 (has links)
The focus of the following research was to use the self-assembly process to create rotaxanes between several large bisphenylene crown ethers (> 22 atoms) with secondary ammonium salts. Also of great interest was to understand the complexation behavior of the crown ethers with the salts, with emphasis on determining the stoichiometries and association constants of the complexations in solution using NMR spectroscopy. The stoichiometry of the complexes was determined by the mole ratio method and the association constants were calculated graphically. Bis-(m-phenylene)-26-crown-8 did not form a complex in solution with several secondary ammonium salts even though the cavity size is large enough to allow the formation of pseudorotaxanes. However, the larger crown ether, bis-(m-phenylene)-32-crown-10 (BMP32C10), did form a complex. The complex stoichiometry varied between 1:1 (crown:salt) in solution and 1:2 in the solid state as evidenced by NMR and X-ray crystallography, respectively. The solid state complexes were pseudorotaxanes. Also, an interesting "exo" complex was formed in the solid state between BMP32C10 and a secondary diammonium salt. The major binding force for the complexes in the X-ray structures was hydrogen bonding. Weaker secondary stabilization was achieved via aryl-aryl aromatic interactions. The difference between the stoichiometries in the two phases and the observance of an "exo" complex demonstrates that one must be careful in describing the complexes in each phase. Also investigated was the complexation formed between dibenzo-24-crown-8 (DB24C8) and secondary diammonium salts. The association constants for the complexes were found to be relatively higher. Due to the weaker association constants and the different stoichiometries of complexation the meta-susbtituted bisphenylene crown ethers were not recommended for the formation of larger complexes, i.e. polyrotaxanes. However, it is suggested that the DB24C8 moiety be used in components of supramolecular assemblies. The functionalization of poly(propylene imine) dendrimers with two different crown ethers as peripheral moieties was attempted. The 1st, 3rd, and 5th generation poly(propylene imine) dendrimers were functionalized with 1,3-phenylene-16-crown-5 moieties by reacting the surface primary amines with the corresponding succinimide ester of the crown ether. The larger DB24C8 succinimide ester was not as reactive and full functionalization was not achieved. / Ph. D.
333

Self-Assembly of Large Amyloid Fibers

Ridgley, Devin Michael 29 May 2014 (has links)
Functional amyloids found throughout nature have demonstrated that amyloid fibers are potential industrial biomaterials. This work introduces a new 'template plus adder' cooperative mechanism for the spontaneous self-assembly of micrometer sized amyloid fibers. A short hydrophobic template peptide induces a conformation change within a highly α-helical adder protein to form β-sheets that continue to assemble into micrometer sized amyloid fibers. This study utilizes a variety of proteins that have template or adder characteristics which suggests that this mechanism may be employed throughout nature. Depending on the amino acid composition of the proteins used the mixtures form amyloid fibers of a cylindrical (~10 μm diameter, ~2 GPa Young's modulus) or tape (5-10 μm height, 10-20 μm width and 100-200 MPa Young's modulus) morphology. Processing conditions are altered to manipulate the morphology and structural characteristics of the fibers. Spectroscopy is utilized to identify certain amino acid groups that contribute to the self-assembly process. Aliphatic amino acids (A, I, V and L) are responsible for initiating conformation change of the adder proteins to assemble into amyloid tapes. Additional polyglutamine segments (Q-blocks) within the protein mixtures will form Q hydrogen bonds to reinforce the amyloid structure and form a cylindrical fiber of higher modulus. Atomic force microscopy is utilized to delineate the self-assembly of amyloid tapes and cylindrical fibers from protofibrils (15-30 nm width) to fibers (10-20 μm width) spanning three orders of magnitude. The aliphatic amino acid content of the adder proteins' α-helices is a good predictor of high density β-sheet formation within the protein mixture. Thus, it is possible to predict the propensity of a protein to undergo conformation change into amyloid structures. Finally, Escherichia coli is genetically engineered to express a template protein which self-assembles into large amyloid fibers when combined with extracellular myoglobin, an adder protein. The goal of this thesis is to produce, manipulate and characterize the self-assembly of large amyloid fibers for their potential industrial biomaterial applications. The techniques used throughout this study outline various methods to design and engineer amyloid fibers of a tailored modulus and morphology. Furthermore, the mechanisms described here may offer some insight into naturally occurring amyloid forming systems. / Ph. D.
334

Self-assembly of magnetic nanoparticles: A tool for building at the nanoscale

Ghosh, Suvojit 15 January 2014 (has links)
Nanoparticles can be used as building blocks of materials. Properties of such materials depend on the organization of the constituent particles. Thus, control over particle organization enables control over material properties. However, robust and scalable methods for arranging nanoparticles are still lacking. This dissertation explores the use of an externally applied magnetic field to organize magnetic nanoparticles into microstructures of desired shape. It extends to proofs of concept towards applications in material design and tissue engineering. First, external control over dipolar self-assembly of magnetic nanoparticles (MNPs) in a liquid dispersion is investigated experimentally. Scaling laws are derived to explain experimental observations, correlating process control variables to microstructure morphology. Implications of morphology on magnetic properties of such structures are then explored computationally. Specifically, a method is proposed wherein superparamangetic nanoparticles, having no residual magnetization, can be organized into anisotropic structures with remanence. Another application explores the use of magnetic forces in organizing human cells into three-dimensional (3D) structures of desired shape and size. When magnetized cells are held in place for several days, they are seen to form inter-cellular contacts and organize themselves into tight clusters. This provides a method for 3D tissue culture without the use of artificial scaffolding materials. Finally, a method to pattern heterogeneities in the stiffness of an elastomer is developed. This makes use of selective inhibition of the catalyst of crosslinking reactions by magnetite nanoparticles. The last chapter discusses future possibilities. / Ph. D.
335

Self-assembly of anisotropic nanostructures and interferometric spectroscopy

He, Zhixing 20 March 2020 (has links)
With the development of controlled and predictable nanoparticle fabrication, assembling multiple nano-objects into larger functional nanostructure has attracted increasing attention. As the most basic structure, assembly of one-dimensional (1D) structures is a good model for investigating the assembly mechanism of a nanostructure's formation from individual particles. In this dissertation, the dynamics and the growth mechanism of anisotropic 1D nanostructures is investigated. In our first study, we demonstrate a simple method for assembling superparamagnetic nanoparticles (SPIONs) into structure-controlled 1D chains in a rotating magnetic field. The length of the SPION chains can be well described by an exponential distribution, as is also seen in SPION chains in a static field. In addition, the maximum chain length is limited by the field's rotational speed, as is seen in micro-sized beads forming chains in a rotating field. However, due to a combination of thermal fluctuations and hydrodynamic forces, the chain length in our case is shorter than either limit. In addition to chain length, the disorder of chains was also studied. Because of the friction between particles, kinetic potential traps prevent relaxation to the global free energy minimum. The traps are too deep to be overcome through thermal fluctuations, and assemblies captured by the kinetic traps therefore form disordered chains. We demonstrate that this disorder gradually heals over a timescale of tens of minutes and that the healing process can be promoted by increasing particle concentration or solution ionic strength, suggesting that the chain growth process provides the energy required to overcome the kinetic trapping. Next, we introduce a novel optical technique we term Quantitative Optical Anisotropy Imaging (QOAI). A fast and precise single-particle characterizing technique for anisotropic nanostructures, QOAI allows real-time tracking of particle orientation as well as the spectroscopic characterization of polarizabilities of nanoparticles on a microsecond timescale. The abilities of QOAI are demonstrated by the detection and the characterization of single gold nanorods. We also show that single particle diffusions and the process of particle binding to a wall can be tracked through QOAI. The rotational diffusivities of gold nanorods near the wall were determined by autocorrelation analysis, which shows that the diffusivity in the polar direction is slightly smaller than in the azimuthal direction. This result demonstrates that a detailed correlation analysis with QOAI may provide the opportunity to analyze both the translational and rotational motion of particles simultaneously, enabling true 3-dimensional orientation tracking. Finally, optical methods including QOAI are applied to the investigation of magnetic assembly, demonstrating that optical anisotropy is generated during particle binding, which can be used as a probe of the magnetic assembly process. QOAI is employed to track the dynamics of magnetic clusters in real time, attempting to capture insights on the self-assembly of the magnetic nanoparticles. By turning the external magnetic field on and off, the processes of combining superparamagnetic colloidal nanoparticle clusters into chain assemblies are monitored along with the chain growth. This fast and orientation-sensitive single-particle measurement opens the door to detailed studies of self-assembly away from equilibrium. / Doctor of Philosophy / Nanotechnology is the study and application of phenomena at the nanoscale, which is between 1 and 100 nm. Due to quantum effects, nanomaterials exhibit many interesting properties that cannot be found in bulk materials and are highly influenced by the shape of the nanostructures. One of the most promising strategies for forming complex nanostructures is to use smaller nanoparticles as building blocks. Therefore, significant efforts have been spent on the studies of the fabrication and modeling of the assembly of nanostructures. As a good starting point for analyzing the mechanism of self-assembly, we focus on the most basic structure, one-dimensional (1D) nanowires and chains. First, we demonstrate a simple method to fabricate one-dimensional magnetic chains from spherical magnetic nanoparticles in a rotating magnetic field. The growth mechanism of the nanochains is investigated, indicating the theory developed for chains formed with larger beads is not applicable at the nanoscale, and additional factors, such as the effect of temperature, need to be considered. Second, we introduce a fast, sensitive optical technique for characterizing anisotropic nanostructures. Because of their unique optical properties, gold nanorods are used to demonstrate the capabilities of the optical system. Not only static properties (orientation, aspect ratio), but also dynamics properties (rotational motion), of single gold nanorods are characterized quantitatively. Finally, this optical technique is extended to preliminary work on characterizing magnetic chain assembly. The processes of magnetic cluster binding and dissociation in a magnetic field are monitored and analyzed.
336

Formation of Meso-Structured Multi-Scale Porous Titanium Dioxide by Combined Soft-Templating, Freeze-Casting and Hard-Templating Using Cellulose Nanocrystals

Zahed, Nizar Bassam 28 January 2019 (has links)
This thesis identifies a facile and versatile technique for creating multi-scale porous titania with tunable meso-scale morphology. Three templating approaches were simultaneously utilized in achieving this; namely, soft-templating by template-free self-assembly of an aligned macroporous structure, freeze-casting for the preservation of particle dispersion found in suspension, and hard-templating by the use of cellulose nanocrystals (CNCs) as sacrificial material. A systematic study was conducted wherein three synthesis parameters (water content, alcohol solvent content, and drying method) were varied in the hydrolysis of titanium tetra-isopropoxide (TTIP) by the sol-gel method to determine their contribution to the formation of multi-scale porous titania exhibiting aligned macrochannels and mesoporosity. The optimal synthesis settings for producing multi-scale porous titania were identified as H2O/TTIP molar ratio of 30, without any isopropanol (acting as solvent), and freeze-drying after freezing at -40°C. Subsequently, CNCs were added in various quantities (0-50vol%) to the hydrolysis of TTIP using these optimized settings to achieve more direct and precise control of the final titania meso-structure. Morphological studies revealed that the final titania bodies maintained the formation of macrochannels 1-3 μm in diameter as a result of hydrolysis in excess water in the absence of an organic solvent and exhibited successful templating mutually affected by CNC addition and freeze-casting. Freeze-drying preserved particle dispersion in the colloid suspension, hindering agglomeration otherwise found after oven-drying and enhanced the CNCs' role of disrupting titania aggregation and increasing interconnectivity. Thus, meso-structured multi-scale porous titania was prepared by a combined templating strategy using template-free self-assembly, freeze-casting, and CNC hard-templating. / MS / Titanium dioxide (TiO₂) has been shown to exhibit desirable properties including physical and chemical stability and biocompatibility making it a material of great interest in a variety of fields including pigments and biomedicine. Furthermore, the material’s photocatalytic activity (i.e. ability to absorb light energy to generate usable charge) has led to its implementation in solar cells, in the production of hydrogen as an eco-friendly fuel, and in decontaminating water from organic pollutants. While TiO₂ has shown great promise in these applications, there remains a need to identify a simple strategy to synthesize TiO₂ with a tunable multi-scale porous structure with pores of different sizes and shapes to improve its performance. To this end, a facile and versatile procedure was used to prepare multi-scale porous TiO₂ with tunable morphology. In investigating the effect of water content, alcohol content and drying method on the final morphology, a multi-scale structure was achieved by synthesizing TiO₂ in the absence of an alcohol solvent and within a new moderate range of water content that had not been previously explored. Lacking an effective and easy strategy to further manipulate the multi-scale morphology, this self-assembly technique was modified by incorporating cellulose nanocrystals (CNCs) into the synthesis procedures to further tune the structure on the nanometric scale by altering the final porosity and surface area. The final TiO₂ samples exhibited multi-scale porous structures that could be manipulated by combining the self-assembly and CNC-templating techniques in an adaptable strategy to tailor the TiO₂ morphology for its various uses in photocatalysis and biomedicine.
337

Crystal Polymorphism as a Probe for Molecular Self-Assembly during Nucleation from solutions: The Case of 2,6 - Dihydroxybenzoic Acid.

Davey, R.J., Blagden, Nicholas, Righini, S., Alison, H., Quayle, M.J., Fuller, S. January 2001 (has links)
No / The relationship between molecular self-assembly processes and nucleation during crystallization from solution is an important issue, both in terms of fundamental physical chemistry and for the control and application of crystallization processes in crystal engineering and materials chemistry. This contribution examines the extent to which the occurrence of crystal polymorphism can be used as an indicator of the nature of molecular aggregation processes in supersaturated solutions. For the specific case of 2,6-dihydroxybenzoic acid a combination of solubility, spectroscopic, crystallization, and molecular modeling techniques are used to demonstrate that there is a direct link between the solvent-induced self-assembly of this molecule and the relative occurrence of its two polymorphic forms from toluene and chloroform solutions.
338

1D vs. 2D shape selectivity in the crystallization-driven self-assembly of polylactide block copolymers

Inam, M., Cambridge, G., Pitto-Barry, Anaïs, Laker, Z.P.L., Wilson, N.R., Mathers, R.T., Dove, A.P., O'Reilly, R.K. 13 April 2017 (has links)
Yes / 2D materials such as graphene, LAPONITE® clays or molybdenum disulfide nanosheets are of extremely high interest to the materials community as a result of their high surface area and controllable surface properties. While several methods to access 2D inorganic materials are known, the investigation of 2D organic nanomaterials is less well developed on account of the lack of ready synthetic accessibility. Crystallization-driven self-assembly (CDSA) has become a powerful method to access a wide range of complex but precisely-defined nanostructures. The preparation of 2D structures, however, particularly those aimed towards biomedical applications, is limited, with few offering biocompatible and biodegradable characteristics as well as control over self-assembly in two dimensions. Herein, in contrast to conventional self-assembly rules, we show that the solubility of polylactide (PLLA)-based amphiphiles in alcohols results in unprecedented shape selectivity based on unimer solubility. We use log Poct analysis to drive solvent selection for the formation of large uniform 2D diamond-shaped platelets, up to several microns in size, using long, soluble coronal blocks. By contrast, less soluble PLLA-containing block copolymers yield cylindrical micelles and mixed morphologies. The methods developed in this work provide a simple and consistently reproducible protocol for the preparation of well-defined 2D organic nanomaterials, whose size and morphology are expected to facilitate potential applications in drug delivery, tissue engineering and in nanocomposites. / University of Warwick, Materials GRP, EPSRC, The Royal Society, ERC
339

Pathway-dependent gold nanoparticle formation by biocatalytic self-assembly

Sahoo, J.K., Roy, S., Javid, Nadeem, Duncan, K., Aitken, L., Ulijn, R.V. 08 April 2017 (has links)
Yes / We report on the use of non-equillibrium biocatalytic self-assembly and gelation to guide the reductive synthesis of gold nanoparticles. We show that biocatalytic rates simultaneously dictate supramolecular order and presentation of reductive phenols which in turn results in size control of nanoparticles that are formed. / BBSRC funding (BB/K007513/1); European Research Council under the European Union’s Seventh Framework Programme, ERC (Starting Grant EMERgE) grant agreement no. 258775.
340

Exploiting nucleobase-containing materials : from monomers to complex morphologies using RAFT dispersion polymerization

Kang, Y., Pitto-Barry, Anaïs, Willcock, H., Quan, W-D., Kirby, N., Sanchez, A.M., O'Reilly, R.K. 09 November 2014 (has links)
Yes / The synthesis of nucleobase-containing polymers was successfully performed by RAFT dispersion polymerization in both chloroform and 1,4-dioxane and self-assembly was induced by the polymerizations. A combination of scattering and microscopy techniques were used to characterize the morphologies. It is found that the morphologies of self-assembled nucleobase-containing polymers are solvent dependent. By varying the DP of the core-forming block, only spherical micelles with internal structures were obtained in chloroform when using only adenine-containing methacrylate or a mixture of adenine-containing methacrylate and thymine-containing methacrylate as monomers. However, higher order structures and morphology transitions were observed in 1,4-dioxane. A sphere-rod-lamella-twisted bilayer transition was observed in this study. Moreover, the kinetics of the dispersion polymerizations were studied in both solvents, suggesting a different formation mechanism in these systems. / University of Warwick, Swiss National Science Foundation, EPSRC, Birmingham Science City, Advanatfe West Midlands (AWM), European Regional Development Fund (ERDF), Science City Research Alliance, Higher Education Funding Council for England (HEFCE)

Page generated in 0.0542 seconds