Spelling suggestions: "subject:"repulsing"" "subject:"multipulsing""
1 |
High-frequency nonlinear dynamics of a laser diode with phase-conjugate feedback / High-frequency nonlinear dynamics of a laser diode with phase-conjugate feedbackMercier, Emeric 19 October 2016 (has links)
Nous étudions l’influence d’une rétroaction optique à conjugaison de phase dans une diode laser. Ce type de rétroaction a été peu étudié et nous montrons ici qu’il donne des résultats intéressants, permettant de débloquer du contenu à haute fréquence. Cela pourrait mener à de meilleures performances dans des systèmes de génération de nombres aléatoires utilisant du chaos optique. / We study the influence of phase-conjugate feedback in a laser diode. This type of feedback has not been studied a lot and yet we show here that it can give interesting results. It unlocks oscillations at high frequencies. This could lead to an improvement in the performance of random number generators based on optical chaos.
|
2 |
High-frequency nonlinear dynamics of a laser diode with phase-conjugate feedback / High-frequency nonlinear dynamics of a laser diode with phase-conjugate feedbackMercier, Emeric 19 October 2016 (has links)
Nous étudions l’influence d’une rétroaction optique à conjugaison de phase dans une diode laser. Ce type de rétroaction a été peu étudié et nous montrons ici qu’il donne des résultats intéressants, permettant de débloquer du contenu à haute fréquence. Cela pourrait mener à de meilleures performances dans des systèmes de génération de nombres aléatoires utilisant du chaos optique. / We study the influence of phase-conjugate feedback in a laser diode. This type of feedback has not been studied a lot and yet we show here that it can give interesting results. It unlocks oscillations at high frequencies. This could lead to an improvement in the performance of random number generators based on optical chaos.
|
3 |
Nonlinear Dynamics in III-V Semiconductor Photonic Crystal Nano-cavities / Dynamique Non-linéaire en Nano-cavités à Cristal Photonique en Semiconducteur III-VBrunstein, Maia 08 June 2011 (has links)
L’optique non linéaire traite les modifications des propriétés optiques d'un matériau induites par la propagation de la lumière. Depuis ses débuts, il y a cinquante ans, des nombreuses applications ont été démontrées dans presque tous les domaines de la science. Dans le domaine de la micro et nano-photonique, les phénomènes non linéaires sont à la fois au cœur d’une physique fondamentale fascinante et des applications intéressantes: ils permettent d'adapter et de contrôler le flux de lumière à une échelle spatiale inferieure à la longueur d'onde. En effet, les effets non linéaires peuvent être amplifiés dans des systèmes qui confinent la lumière dans des espaces restreints et avec de faibles pertes optiques. Des bons candidats pour ce confinement sont les nanocavités à cristaux photoniques (CPs), qui ont été largement étudiées ces dernières années. Parmi la grande diversité des processus non linéaires en optique, les phénomènes dynamiques tels que la bistabilité et l'excitabilité font l’objet de nombreuses études. La bistabilité est bien connue pour ces applications potentielles pour les mémoires et les commutateurs optiques et pour les portes logiques. Une réponse excitable typique est celle subjacente dans le déclanchement du potentiel d'action dans les neurones. En optique, l'excitabilité a été observée il y a une quinzaine d’années. Dans ce travail, nous avons étudié les régimes bistables, auto-oscillants et excitables dans des nanocavités semiconductrices III-V à CP. Afin de coupler efficacement la lumière dans les nanocavités, nous avons développé une technique de couplage par onde évanescente en utilisant une microfibre optique étirée. Grâce à cette technique, nous avons démontré pour la première fois l’excitabilité dans une nanocavité à CP. En parallèle, nous avons accompli la première étape vers la dynamique non linéaire dans un réseau de cavités couplées en démontrant le couplage optique linéaire entre nanocavitités adjacentes. Ceci a été réalisé en utilisant de mesures de photoluminescence en champ lointain. Un ensemble de résonateurs non linéaires couplés ouvre la voie à une famille de phénomènes dynamiques non linéaires très riches, basés sur la rupture spontanée de symétrie. Nous avons démontré théoriquement ce phénomène dans deux cavités couplées par onde évanescente. Les premières études expérimentales de ce régime ont été menées, établissant ainsi les bases pour une future démonstration de la rupture spontanée de symétrie dans un réseau de nanocavités non linéaires couplées. / Nonlinear optics concerns the modifications of the optical properties of a material induced by the propagation of light. Since its beginnings, fifty years ago, it has already found applications in almost any field of science. In micro and nano-photonics, nonlinear phenomena are at the heart of both fascinating fundamental physics and interesting potential applications: they give a handle to tailor and control the flow of light within a sub-wavelength spatial scale. Indeed, the nonlinear effects can be enhanced in systems allowing tight light confinement and low optical loses. Good candidates for this are the Photonic Crystal (PhC) nanocavities, which have been extensively studied in recent years. Among the great diversity of nonlinear processes in optics, nonlinear dynamical phenomena such as bistability and excitability have recently received considerable attention. While bistability is well known as a building block for all-optical memories, switching and logic gates, excitability has been demonstrated in optics about fifteen years ago: coming from neuroscience, it is the mechanism underlying action potential firing in neurons. In this work, we have studied bistable, self-pulsing and excitable regimes in InP-based PhC nanocavities. In order to achieve efficient light coupling into the nanocavities, we have developed an evanescent coupling technique using tapered optical microfibers. As a result, we have demonstrated for the first time excitability in a PhC nanocavity. In addition, we have accomplished the first step towards nonlinear dynamics in arrays of coupled cavities by demonstrating optical linear coupling between adjacent nanocavitites. This was achieved using far field measurements of photoluminescence. A set of coupled nonlinear resonators opens the door to a rich family of nonlinear dynamical phenomena based on spontaneous symmetry breaking. We have theoretically demonstrated this phenomenon in two evanescently coupled cavities. The first experimental studies on this regime were carried out, which establish a basis for a future demonstration of spontaneous symmetry breaking in arrays of nonlinear coupled PhC nanocavities.
|
4 |
Effets d’optique non-linéaire d’ordre trois dans les cavités à cristaux photoniques en silicium : auto-oscillations GHz dues aux porteurs libres et diffusion Raman stimulée / Nonlinear optical effects of the third order in silicon photonic crystal cavities : High frequency self-induced oscillations and stimulated Raman scatteringCazier, Nicolas 13 December 2013 (has links)
Dans ce travail de thèse, nous avons étudié des effets d'optique non-linéaire d'ordre trois dans les cavités à cristaux photoniques en silicium. Le premier d'entre eux est un phénomène d'auto-oscillations à haute fréquence (GHz) dans ces cavités, qui a pour origine une modulation de la transmission de la cavité due à l'interaction entre la dispersion due aux porteurs libres et l’absorption à deux photons. Nous avons observé ces auto-oscillations, pour la première fois, dans les nanocavités à cristaux photoniques silicium avec une fréquence de l’ordre de 3 GHz et une grande pureté spectrale. Nous avons développé un modèle pour analyser les mécanismes qui régissent l'apparition de ces auto-oscillations, ainsi que les amplitudes des fréquences fondamentale et harmoniques de ces oscillations. Ce phénomène d'auto-oscillations permettrait de réaliser des sources micro-ondes en silicium très compactes. Le deuxième phénomène étudié est celui de la diffusion Raman, qui est le seul moyen d'obtenir des lasers entièrement en silicium démontré jusqu'à présent. Cette diffusion Raman a été mesurée tout d'abord dans des guides d'onde à cristaux photoniques étroits (W0.63) de longueur 100 microns, où nous avons pu obtenir un nombre de photons Stokes allant jusqu'à 9, montrant ainsi que la diffusion Raman stimulée prédominait dans ces guides d'onde, bien que nous n’ayons pas pu y obtenir un effet laser Raman franc. Nous avons ensuite mesuré la diffusion Raman dans des nanocavités doublement résonantes conçues spécifiquement à partir de ces guides d'ondes pour optimiser l'effet Raman, avec des facteurs de qualités allant jusqu'à 235000 pour la résonance Stokes. Bien que nous n'ayons pu mesurer que de la diffusion Raman spontanée dans ces cavités, avec un facteur de Purcell de 2.9, l'étude théorique que nous avons effectuée sur les lasers Raman, et qui s'accorde parfaitement avec les résultats expérimentaux, montre qu’il serait possible d'obtenir un laser Raman dans ces cavités avec un seuil en dessous du milliwatt à condition de diminuer ces pertes dues à l'absorption par porteurs libres. Ceci pourrait être accompli en diminuant le temps de vie des porteurs libres, par exemple en les retirant du silicium à l’aide d’une jonction MSM. / In this thesis, we studied third order nonlinear optical effects in photonic crystal cavities. The first of those effects is is the phenomenon of high frequency (GHz) self-pulsing in these cavities, which originates from a modulation of the transmission of the cavity due to the interaction between the free-carrier dispersion and the two-photon absorption. We have observed these self-induced oscillations for the first time in silicon photonic crystal nanocavities, with a frequency of about 3 GHz and a high spectral purity. We have developed a model to analyze the mechanisms that govern the onset of these oscillations, as well as the amplitudes of the fundamental and harmonic frequencies of these oscillations. This self-pulsing phenomenon would allow us to realize realize ultra-compact microwave sources made of silicon. The second phenomenon studied is that of Raman scattering, which is the only way to obtain lasers fully in silicon demonstrated so far. The Raman scattering was measured first in narrow photonic crystals waveguides (W0.63) of length 100 microns, where we could obtain a number of Stokes photons up to 9, showing that the stimulated Raman scattering predominated in these waveguides, although we have not been able to obtain a true Raman laser effect in them. We then measured the Raman scattering in doubly resonant nanocavities specifically designed from these waveguides to optimize the Raman effect, with quality factors up to 235000 for the Stokes resonance. Although we could only measure spontaneous Raman scattering in these cavities, with a Purcell factor of 2.9, the theoretical study that we conducted on the Raman lasers, which agrees perfectly with the experimental results, shows that it would be possible to obtain a Raman laser in these cavities with a threshold below the milliwatt, provided we reduce the losses due to the free-carrier absorption. This could be accomplished by decreasing the free-carrier lifetime, for example by removing the free carriers from the silicon using a MSM junction.
|
5 |
Modelling of Pulse Propagation in Nonlinear Photonic Structures / Modelling of Pulse Propagation in Nonlinear Photonic StructuresSterkhova, Anna January 2014 (has links)
V současnosti jsme svědky stále zvyšujících se nároku na rychlost přenosu a zpracování signálu a kapacitu pamet’ových zařízení. Proto se pozornost výzkumných pracovníku zaměřuje k plně optickým zařízením, která by mohla splnit zmíněné požadavky. Jednou z intenzívně zkoumaných možností je využití mikroprstencových optických rezonátoru. Při výzkumu je nutné využít numerických metod, které simulují šíření optického záření v dané struktuře. K tomuto účelu existuje celá rada metod, které se liší v efektivitě výpočtu, použitých aproximacích, i možnostech použití. Cílem této práce bylo vyvinout dvě jednoduché a praktické numerické metody pro modelování šíření pulzního záření v nelineárních vlnovodných strukturách. Přítom bylo požadováno, aby, na rozdíl od obecně známé a často využívané metody konečných diferencí v časové oblasti (FD-TD), bylo možné metody snadno aplikovat při studiu nelineárních struktur založených na mikroprstencových rezonátorech. Proto vyvinuté metody používají některé aproximace, zejména aproximaci pomalu proměnné obálky. Výhodou metod je vysoká rychlost a skromné požadavky na výpočetní zdroje. Obě metody vycházejí ze zkutečnosti, že naprostá většina nelineárních struktur založených na mikroprstencových rezonátorech se skládá ze dvou základních prvku: obyčejných vlnovodu a vlnovodných vazebních clenu. První metoda řeší vázané parciální diferenciální rovnice, které popisují šíření obálky pulzu ve struktuře. Přitom je použito tzv. „up-wind“ schéma vhodné pro parciální diferenciální rovnice popisující šíření vln. Druhá metoda vychází z první; rozdíl je v popisu vazby mezi dvěma vlnovody. Pokud se v první metodě uvažuje realistická vazba rozložená na určité délce, pak druhá metoda je založena na představě vazby nacházející se v jednom místě. Díky tomu je možné integrovat příslušné rovnice a dosáhnout výrazného urychlení výpočtu. Kvazianalytický charakter druhé metody umožňuje dále snadnou klasifikaci různých typu ustálených řešení. Vzhledem k těmto vlastnostem byla druhá metoda využita k výzkumu samovolné generace optických pulzu ve strukturách skládajících se z vázaných prstencových rezonátoru. Obě metody, které byly vyvinuty během této práce, představují rychlé a fyzikálně názorné alternativy k metodě FD-TD, a tak lze očekávat, že mohou hrát důležitou roli při výzkumu nelineárních vlnovodných struktur.
|
Page generated in 0.0597 seconds