• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Process-Oriented Ontology for Representing Software Engineering Project Knowledge

Sherman, Steven Jay 01 January 2009 (has links)
Organizational project knowledge is not being captured, consolidated, and organized, making it difficult to learn from past projects, expose the knowledge of the most experienced people, or share experience across geographic project locations. The lack of an ontology for representing this comprehensive project store inhibits its creation and the development of tools to operate on it. Process-orientation links organizational resources or artifacts with process phases and workflow. A process-orientation in knowledge management can be used to add contextual metadata to knowledge artifacts. Context can be used to improve information retrieval precision. Therefore, the study proposed a process-oriented ontology to improve the transfer of software engineering project knowledge. Four questions guided the research: What knowledge about projects should be captured? Are all project artifacts necessary and are they all equally valuable? How can process-orientation be applied to a software engineering project knowledge ontology? Are current knowledge representation languages appropriate for the task? Can software development project knowledge, as represented by this ontology, be captured and retrieved effectively in a KMS? Literature research and an empirical laboratory study answered all of the questions: Four areas of project knowledge are particularly valuable in terms of their impact on project success; requirements, revisions, risks, and resolutions. These areas also cover a meaningful breadth of software engineering project knowledge. A process abstraction was created that breaks a project down into eleven phases. These phases were the basis for a class definition that was added as a peer class to the knowledge artifacts. Using Protégé, the Process-Oriented Ontology for Software Engineering (POSE) was successfully implemented in OWL-DL. Project knowledge from a software organization was used to construct two knowledgebases: one using Google Desktop and the other using Protégé and POSE. Results demonstrated that software engineering project knowledge, as represented by POSE, can be effectively captured and retrieved. POSE-enhanced search was superior to keyword search. Google was comparable in broad text search. But the benefits of metadata and semantics proved to have significant advantages for ontologies. Process-orientation was also validated as a contributor to improved classification and retrieval.
2

Recherche d’information s´emantique : Graphe sémantico-documentaire et propagation d’activation / Semantic Information Retrieval : Semantic-Documentary Graph and Spreading Information

Bannour, Ines 09 May 2017 (has links)
La recherche d’information sémantique (RIS), cherche à proposer des modèles qui permettent de s’appuyer, au delà des calculs statistiques, sur la signification et la sémantique des mots du vocabulaire, afin de mieux caractériser les documents pertinents au regard du besoin de l’utilisateur et de les retrouver. Le but est ainsi de dépasser les approches classiques purement statistiques (de « sac de mots »), fondées sur des appariements de chaînes de caractères sur la base des fréquences des mots et de l’analyse de leurs distributions dans le texte. Pour ce faire, les approches existantes de RIS, à travers l’exploitation de ressources sémantiques externes (thésaurus ou ontologies), procèdent en injectant des connaissances dans les modèles classiques de RI de manière à désambiguïser le vocabulaire ou à enrichir la représentation des documents et des requêtes. Il s’agit le plus souvent d’adaptations de ces modèles, on passe alors à une approche « sac de concepts » qui permet de prendre en compte la sémantique notamment la synonymie. Les ressources sémantiques, ainsi exploitées, sont « aplaties », les calculs se cantonnent, généralement, à des calculs de similarité sémantique. Afin de permettre une meilleure exploitation de la sémantique en RI, nous mettons en place un nouveau modèle, qui permet d’unifier de manière cohérente et homogène les informations numériques (distributionnelles) et symboliques (sémantiques) sans sacrifier la puissance des analyses. Le réseau sémantico-documentaire ainsi modélisé est traduit en graphe pondéré. Le mécanisme d’appariement est assuré par une propagation d’activation dans le graphe. Ce nouveau modèle permet à la fois de répondre à des requêtes exprimées sous forme de mots clés, de concepts oumême de documents exemples. L’algorithme de propagation a le mérite de préserver les caractéristiques largement éprouvéesdes modèles classiques de recherche d’information tout en permettant une meilleure prise en compte des modèles sémantiques et de leurs richesse. Selon que l’on introduit ou pas de la sémantique dans ce graphe, ce modèle permet de reproduire une RI classique ou d’assurer en sus certaines fonctionnalités sémantiques. La co-occurrence dans le graphe permet alors de révélerune sémantique implicite qui améliore la précision en résolvant certaines ambiguïtés sémantiques.L’exploitation explicite des concepts ainsi que des liens du graphe, permettent la résolution des problèmes de synonymie, de term mismatch et de couverture sémantique. Ces fonctionnalités sémantiques, ainsi que le passage à l’échelle du modèle présenté, sont validés expérimentalement sur un corpus dans le domaine médical. / Semantic information retrieval (SIR) aims to propose models that allow us to rely, beyond statistical calculations, on the meaning and semantics of the words of the vocabulary, in order to better represent relevant documents with respect to user’s needs, and better retrieve them.The aim is therefore to overcome the classical purely statistical (« bag of wordsé») approaches, based on strings’ matching and the analysis of the frequencies of the words and their distributions in the text.To do this, existing SIR approaches, through the exploitation of external semantic resources (thesauri, ontologies, etc.), proceed by injecting knowledge into the classical IR models (such as the vector space model) in order to disambiguate the vocabulary or to enrich the representation of documents and queries.These are usually adaptations of the classical IR models. We go so to a « bag of concepts » approach which allows us to take account of synonymy. The semantic resources thus exploited are « flattened », the calculations are generally confined to calculations of semantic similarities.In order to better exploit the semantics in RI, we propose a new model, which allows to unify in a coherent and homogeneous way the numerical (distributional) and symbolic (semantic) information without sacrificing the power of the analyzes of the one for the other. The semantic-documentary network thus modeled is translated into a weighted graph. The matching mechanism is provided by a Spreading activation mechanism in the graph. This new model allows to respond to queries expressed in the form of key words, concepts or even examples of documents. The propagation algorithm has the merit of preserving the well-tested characteristics of classical information retrieval models while allowing a better consideration of semantic models and their richness.Depending on whether semantics is introduced in the graph or not, this model makes it possible to reproduce a classical IR or provides, in addition, some semantic functionalities. The co-occurrence in the graph then makes it possible to reveal an implicit semantics which improves the precision by solving some semantic ambiguities. The explicit exploitation of the concepts as well as the links of the graph allow the resolution of the problems of synonymy, term mismatch, semantic coverage, etc. These semantic features, as well as the scaling up of the model presented, are validated experimentally on a corpus in the medical field.
3

Using Semantic Knowledge Management Systems To Overcome Information Overload Problems In Software Engineering

Demirsoy, Ali January 2013 (has links)
Context. Information overload is an increasingly important problem of our age where the amount of data we have is expanding drastically with the use of digital communication. Information retrieval models are developed to help overcoming this problem with computerized tools. Semantic information retrieval, which means retrieving information based on the interpretations of meanings of the words, is one of these models and started to be used commonly to handle large amount of data in the Internet and in enterprises to overcome information overload problems. Objectives. In this study we investigate different information retrieval models for using with knowledge management systems in large-scale organizations from the perspective of software engineers. To this end, we aim at identifying existing issues and needs about information overload and then assessing different solutions against these needs. Afterwards, we analyze the chosen solution, which is semantic search, and define and carry out an implementation process to reflect on it. Finally, the usefulness and feasibility of this type of solutions to overcome the specified information overload problems in software engineering is studied and discussed. Methods. We performed a literature review to extract the existing knowledge, technology, and the problems and solutions in the defined context. Then a case study was conducted at a development site of Ericsson AB in Sweden. Case study involved unstructured and semi-structured interviews for data collection, and an implementation attempt for a simple semantic knowledge management system. Thematic Coding Analysis method is used for qualitative data analysis. Results. We identified 23 codes that are categorized under 8 themes from the opinions of company practitioners about semantic knowledge management systems. They are mainly about the existing problems, arguments for using semantic system for solving them, and suggestions and challenges. Conclusions. We conclude that semantic knowledge management systems have a very high potential to solve information overload problems in software engineering if the necessary measures are taken. We found that the problems are related to search engine and the document structure of the tools; usefulness of semantic system is the capability of ontology based retrieval to filter out irrelevant documents and extract hidden data and people’s skills and interests; and finally the challenge is the necessary endeavor to elicit and satisfy all the needs.
4

Semantic Representation of a Heterogeneous Document Corpus for an Innovative Information Retrieval Model : Application to the Construction Industry / Représentation Sémantique de Corpus de Documents Hétérogènes pour un Modèle de Recherche d'Information Novateur : Application au Domaine du Bâtiment

Charbel, Nathalie 21 December 2018 (has links)
Les avancées récentes des Technologies de l'Information et de la Communication (TIC) ont entraîné des transformations radicales de plusieurs secteurs de l'industrie. L'adoption des technologies du Web Sémantique a démontré plusieurs avantages, surtout dans une application de Recherche d'Information (RI) : une meilleure représentation des données et des capacités de raisonnement sur celles-ci. Cependant, il existe encore peu d’applications industrielles car il reste encore des problèmes non résolus, tels que la représentation de documents hétérogènes interdépendants à travers des modèles de données sémantiques et la représentation des résultats de recherche accompagnés d'informations contextuelles.Dans cette thèse, nous abordons deux défis principaux. Le premier défi porte sur la représentation de la connaissance relative à un corpus de documents hétérogènes couvrant à la fois le contenu des documents fortement lié à un domaine métier ainsi que d'autres aspects liés à la structure de ces documents tels que leurs métadonnées, les relations inter et intra-documentaires (p. ex., les références entre documents ou parties de documents), etc. Le deuxième défi porte sur la construction des résultats de RI, à partir de ce corpus de documents hétérogènes, aidant les utilisateurs à mieux interpréter les informations pertinentes de leur recherche surtout quand il s'agit d'exploiter les relations inter/intra-documentaires.Pour faire face à ces défis, nous proposons tout d'abord une représentation sémantique du corpus de documents hétérogènes à travers un modèle de graphe sémantique couvrant à la fois les dimensions structurelle et métier du corpus. Ensuite, nous définissons une nouvelle structure de données pour les résultats de recherche, extraite à partir de ce graphe, qui incorpore les informations pertinentes directes ainsi qu'un contexte structurel et métier. Afin d'exploiter cette nouvelle structure dans un modèle de RI novateur, nous proposons une chaine de traitement automatique de la requête de l'utilisateur, allant du module d'interprétation de requête, aux modules de recherche, de classement et de présentation des résultats. Bien que nous proposions une chaine de traitement complète, nos contributions se focalisent sur les modules de recherche et de classement.Nous proposons une solution générique qui peut être appliquée dans différents domaines d'applications métiers. Cependant, dans cette thèse, les expérimentations ont été appliquées au domaine du Bâtiment et Travaux Publics (BTP), en s'appuyant sur des projets de construction. / The recent advances of Information and Communication Technology (ICT) have resulted in the development of several industries. Adopting semantic technologies has proven several benefits for enabling a better representation of the data and empowering reasoning capabilities over it, especially within an Information Retrieval (IR) application. This has, however, few applications in the industries as there are still unresolved issues, such as the shift from heterogeneous interdependent documents to semantic data models and the representation of the search results while considering relevant contextual information. In this thesis, we address two main challenges. The first one focuses on the representation of the collective knowledge embedded in a heterogeneous document corpus covering both the domain-specific content of the documents, and other structural aspects such as their metadata, their dependencies (e.g., references), etc. The second one focuses on providing users with innovative search results, from the heterogeneous document corpus, helping the users in interpreting the information that is relevant to their inquiries and tracking cross document dependencies.To cope with these challenges, we first propose a semantic representation of a heterogeneous document corpus that generates a semantic graph covering both the structural and the domain-specific dimensions of the corpus. Then, we introduce a novel data structure for query answers, extracted from this graph, which embeds core information together with structural-based and domain-specific context. In order to provide such query answers, we propose an innovative query processing pipeline, which involves query interpretation, search, ranking, and presentation modules, with a focus on the search and ranking modules.Our proposal is generic as it can be applicable in different domains. However, in this thesis, it has been experimented in the Architecture, Engineering and Construction (AEC) industry using real-world construction projects.
5

Approches hybrides pour la recherche sémantique de l'information : intégration des bases de connaissances et des ressources semi-structurées / Hybrid Approaches for Semantic Information Retrieval : Towards the Integration of Knowledge Bases and Semistructured Resources

Mrabet, Yassine 12 July 2012 (has links)
La recherche sémantique de l'information a connu un nouvel essor avec les nouvelles technologies du Web sémantique. Des langages standards permettent aujourd'hui aux logiciels de communiquer par le biais de données écrites dans le vocabulaire d'ontologies de domaine décrivant une sémantique explicite. Cet accès ``sémantique'' à l'information requiert la disponibilité de bases de connaissances décrivant les instances des ontologies de domaine. Cependant, ces bases de connaissances, bien que de plus en plus riches, contiennent relativement peu d'information par comparaison au volume des informations contenu dans les documents du Web.La recherche sémantique de l'information atteint ainsi certaines limites par comparaison à la recherche classique de l'information qui exploite plus largement ces documents. Ces limites se traduisent explicitement par l'absence d'instances de concepts et de relations dans les bases de connaissances construites à partir des documents du Web. Dans cette thèse nous étudions deux directions de recherche différentes afin de permettre de répondre à des requêtes sémantiques dans de tels cas. Notre première étude porte sur la reformulation des requêtes sémantiques des utilisateurs afin d'atteindre des parties de document pertinentes à la place des faits recherchés et manquants dans les bases de connaissances. La deuxième problématique que nous étudions est celle de l'enrichissement des bases de connaissances par des instances de relations.Nous proposons deux solutions pour ces problématiques en exploitant des documents semi-structurés annotés par des concepts ou des instances de concepts. Un des points clés de ces solutions est qu'elles permettent de découvrir des instances de relations sémantiques sans s'appuyer sur des régularités lexico-syntaxiques ou structurelles dans les documents. Nous situons ces deux approches dans la littérature et nous les évaluons avec plusieurs corpus réels extraits du Web. Les résultats obtenus sur des corpus de citations bibliographiques, des corpus d'appels à communication et des corpus géographiques montrent que ces solutions permettent effectivement de retrouver de nouvelles instances relations à partir de documents hétérogènes tout en contrôlant efficacement leur précision. / Semantic information retrieval has known a rapid development with the new Semantic Web technologies. With these technologies, software can exchange and use data that are written according to domain ontologies describing explicit semantics. This ``semantic'' information access requires the availability of knowledge bases describing both domain ontologies and their instances. The most often, these knowledge bases are constructed automatically by annotating document corpora. However, while these knowledge bases are getting bigger, they still contain much less information when comparing them with the HTML documents available on the surface Web.Thus, semantic information retrieval reaches some limits with respect to ``classic'' information retrieval which exploits these documents at a bigger scale. In practice, these limits consist in the lack of concept and relation instances in the knowledge bases constructed from the same Web documents. In this thesis, we study two research directions in order to answer semantic queries in such cases. The first direction consists in reformulating semantic user queries in order to reach relevant document parts instead of the required (and missing) facts. The second direction that we study is the automatic enrichment of knowledge bases with relation instances.We propose two novel solutions for each of these research directions by exploiting semi-structured documents annotated with concept instances. A key point of these solutions is that they don't require lexico-syntactic or structure regularities in the documents. We position these approaches with respect to the state of the art and experiment them on several real corpora extracted from the Web. The results obtained from bibliographic citations, call-for-papers and geographic corpora show that these solutions allow to retrieve new answers/relation instances from heterogeneous documents and rank them efficiently according to their precision.

Page generated in 0.1082 seconds