Spelling suggestions: "subject:"semiactive"" "subject:"semifactive""
21 |
Low-Cost Semi-Active Laser Seekers for US Army ApplicationHubbard, Keith, Katulka, Gary, Lyon, Dave, Petrick, Doug, Fresconi, Frank, Horwath, T. G. 10 1900 (has links)
ITC/USA 2008 Conference Proceedings / The Forty-Fourth Annual International Telemetering Conference and Technical Exhibition / October 27-30, 2008 / Town and Country Resort & Convention Center, San Diego, California / The U.S. Army Research Laboratory (ARL) is exploring technologies to provide low-cost precision fires, applicable across both direct and indirect fire weapon systems. One of these applications involves a forward observer (FO) designating the target with a laser spot and a seeker on-board the munition detecting the reflected energy to allow terminal guidance. This approach, referred to as semi-active laser (SAL) guidance, has been utilized on numerous air-delivered munitions to include bombs, missiles and projectiles. However, the cost of these systems, driven by high quality optics, high sensitivity detectors and specialized electronics, has hampered their migration into gun-fired munitions such as mortars, artillery and grenades. To explore, develop and demonstrate minimal cost solutions, ARL invested in an Army Technical Objective (ATO) called Smaller, Lighter, Cheaper Munition Components (SLCMC). Specifically, SAL seeker hardware, predicated upon commercial components (COTS) and mass production techniques, is being prototyped for use with gun launched projectiles and laser target designators. The seeker system is comprised of several printed circuit board boards, a microprocessor, a quad-photo detector and, a molded optical lens unit. This seeker is designed to rapidly update the projectile boresight angle, interface with other strap-down sensors, and feed data into an on-board guidance, navigation & control (G,N&C) system to allow for projectile maneuvers. The seeker design and basic characteristics are discussed and presented through-out the paper and presentation.
|
22 |
Radio Frequency Test Lab Built on Non-Developmental ItemsLaird, Daniel T. 10 1900 (has links)
International Telemetering Conference Proceedings / October 22-25, 2001 / Riviera Hotel and Convention Center, Las Vegas, Nevada / The DoD has recently mandated new acquisition, or procurement strategies for the research and
development community. The policy includes using Non-Developmental Items (NDI) whenever feasible,
as well as avoiding the use of proprietary sources. Such practices lesson time from specification to
operation, ease of extensibility and progressive maintainability.
In this paper we discuss the NDI and in-house designed test assets developed and implemented for
testing the pods. Our time from specification to test was less then one year.
|
23 |
Active and Semi-Active Bushing Design for Variable Displacement EngineArzanpour, Siamak January 2006 (has links)
The Variable Displacement Engine (VDE) is a new generation of engines that are designed to decrease the fuel consumption at the cruise speed of a vehicle. The isolation of the VDE's new vibration pattern is beyond the capabilities of conventional mounts and bushings. Consequently, in this thesis, novel active and semi-active solutions are proposed to develop various semi-active and active hydraulic bushing proof-of-concept systems that may solve the isolation problem in a VDE system. <br /><br /> The dynamic stiffness response, which is the transfer function that relates the engine displacement to the transmitted force, is normally used as the key design criterion for engine mounts and bushings. In this thesis, a linear mathematical model of a conventional hydraulic bushing is purposed. The validity of the mathematical model is confirmed by an experimental analysis, and the various parameters in the dynamic stiffness equation are evaluated. The experimental results indicate that the dynamic stiffness frequency response of the conventional hydraulic bushing has both soft and stiff regions. The soft region is limited to low frequencies. For the VDE isolation, the goal is to provide a soft bushing for a wider range of frequencies than a conventional bushing can accommodate. Addition of a short inertia track, similar to a decoupler used in conventional hydraulic engine mounts, may be used to extend the soft region of a conventional hydraulic bushing, and the experimental results validate it. <br /><br /> Since the short inertia track provides no additional damping, a supplementary Magnetorheological (MR) valve is also devised. The MR valve has the advantage to minimize the amount of MR fluid used, which significantly reduces the cost of the overall system. The novel valve allows the damping coefficient of the bushing assembly to be controlled by varying the electrical current input to a solenoid coil. A mathematical model is derived for the MR bushing, and is validated experimentally. <br /><br /> In addition, an active bushing to solve the VDE isolation problem is purposed in this thesis. In this bushing, a magnetic actuator, composed of a permanent magnet and a solenoid coil, is included in the active bushing. This active chamber affects the dynamic stiffness response of the bushing by altering the bushing's internal pressure. The nonlinear equation of motion of the permanent magnet is linearized and is incorporated into the new mathematical model of the system. The new purposed model for the active bushing is in good agreement with the experimental results. This active chamber is also proved capable of producing complex dynamic stiffness frequency response. <br /><br /> The conclusion is that the proposals in this thesis can contribute to the isolation of the vibration pattern, imposed by the application of a VDE system.
|
24 |
Active and Semi-Active Bushing Design for Variable Displacement EngineArzanpour, Siamak January 2006 (has links)
The Variable Displacement Engine (VDE) is a new generation of engines that are designed to decrease the fuel consumption at the cruise speed of a vehicle. The isolation of the VDE's new vibration pattern is beyond the capabilities of conventional mounts and bushings. Consequently, in this thesis, novel active and semi-active solutions are proposed to develop various semi-active and active hydraulic bushing proof-of-concept systems that may solve the isolation problem in a VDE system. <br /><br /> The dynamic stiffness response, which is the transfer function that relates the engine displacement to the transmitted force, is normally used as the key design criterion for engine mounts and bushings. In this thesis, a linear mathematical model of a conventional hydraulic bushing is purposed. The validity of the mathematical model is confirmed by an experimental analysis, and the various parameters in the dynamic stiffness equation are evaluated. The experimental results indicate that the dynamic stiffness frequency response of the conventional hydraulic bushing has both soft and stiff regions. The soft region is limited to low frequencies. For the VDE isolation, the goal is to provide a soft bushing for a wider range of frequencies than a conventional bushing can accommodate. Addition of a short inertia track, similar to a decoupler used in conventional hydraulic engine mounts, may be used to extend the soft region of a conventional hydraulic bushing, and the experimental results validate it. <br /><br /> Since the short inertia track provides no additional damping, a supplementary Magnetorheological (MR) valve is also devised. The MR valve has the advantage to minimize the amount of MR fluid used, which significantly reduces the cost of the overall system. The novel valve allows the damping coefficient of the bushing assembly to be controlled by varying the electrical current input to a solenoid coil. A mathematical model is derived for the MR bushing, and is validated experimentally. <br /><br /> In addition, an active bushing to solve the VDE isolation problem is purposed in this thesis. In this bushing, a magnetic actuator, composed of a permanent magnet and a solenoid coil, is included in the active bushing. This active chamber affects the dynamic stiffness response of the bushing by altering the bushing's internal pressure. The nonlinear equation of motion of the permanent magnet is linearized and is incorporated into the new mathematical model of the system. The new purposed model for the active bushing is in good agreement with the experimental results. This active chamber is also proved capable of producing complex dynamic stiffness frequency response. <br /><br /> The conclusion is that the proposals in this thesis can contribute to the isolation of the vibration pattern, imposed by the application of a VDE system.
|
25 |
Design of Shunt Semi-Active Power factor Correction CircuitsChen, Bing-Hao 14 February 2012 (has links)
This study aims to design a Shunt Semi-Active Power Factor Correction Circuits , which can be applied to high power circuit by low switching frequency. The designed circuit can avoid power loss working with high switching frequency when using the method of active power factor correction .The experimental configuration based on DSP is applied to a compressor of air conditioner with varied load. The simulation check the developed circuit using Ispice . Both of the experimental and simulation results have guaranteed the derived configuration reach the expected goals.
|
26 |
Semi-active smart-dampers and resetable actuators for multi-level seismic hazard mitigation of steel moment resisting framesHunt, Stephen J January 2002 (has links)
This thesis explores the creation and assessment of semi-active control algorithms for both squat shear buildings and tall flexible structures. If cost-effective, practicable, semi-active structural control systems can be developed, the potential reduction in loss of both property and lives due to seismic events is significant. Semi-active controllers offer many of the benefits of active systems, but have power requirements orders of magnitude smaller, and do not introduce energy to the structural system. Previous research into semi-active controllers has shown their potential in linear simulations with single earthquake excitations. The distinguishing feature of this investigation is the use of appropriate non-linear modelling techniques and realistic suites of seismic excitations in the statistical assessment of the semi-active control systems developed. Finite element time-history analysis techniques are used in the performance assessment of the control algorithms developed for three and nine story structural models. The models include non-linear effects due to structural plasticity, yielding, hysteretic behaviour, and P-delta effects. Realistic suites of earthquake records, representing seismic excitations with specific return period probability, are utilised, with lognormal statistical analysis used to represent the response distribution. In addition to displacement focused control laws, acceleration and jerk regulation control methods are developed, showing that potential damage reduction benefits can be obtained from these new control approaches. A statistical assessment of control architecture is developed and undertaken, examining the distribution of constant maximum actuator authority for both squat shear buildings, and tall slender structures, highlighting the need to consider non-linear structural response characteristics when implementing semi-active control systems. Finally, statistical analysis of all results and normalised values shows the efficacy of each control law and actuator type relative to different magnitude seismic events. As a result, this research clearly presents, for the first time, explicit tradeoffs between control law, architecture type, non-linear structural effects, and seismic input characteristics for the semi-active control of civil structures.
|
27 |
Seismic Performance of Semi-Active Control SystemsFranco Anaya, Roberto January 2008 (has links)
The main purpose of this research is to investigate the effectiveness and feasibility of semi-active control systems for structural protection during severe earthquake loading. However, the research reported herein also involves analytical studies on the effect of adding viscous damping to the second and fourth quadrants of the force-displacement curve, and laboratory and field testing of a fibre-optic gyroscope (FOG) for measuring rotations in civil engineering structures.
The concept of the 2-4 viscous damping is introduced to reduce the response of single-degree-of-freedom (SDOF) systems subjected to harmonic and earthquake excitations. This concept involves the addition of structural viscous damping to the second and fourth quadrants of the force-displacement graph. Time-history analyses and response spectra for various SDOF systems are carried out to assess the effect of adding 2-4 viscous damping. The analytical results indicate that the addition of 2-4 viscous damping is beneficial for reducing the harmonic and seismic response of a wide range of SDOF systems.
A newly developed semi-active resettable device is proposed to reduce the seismic response of a one-fifth scale structure. The device is investigated as part of a resettable tendon system installed in the structure. Nonlinear dynamic analyses are performed to determine the optimal configuration of the resettable tendon in the structure. Several shake table tests are performed on the structure equipped with two resettable devices. The dynamic characteristics of the structure and the devices are described. Various earthquake records at different levels of intensity are used during the seismic testing. Different control laws are employed to manipulate the hysteretic behaviour of the devices. The results of the shake table tests validate the effectiveness of the resettable devices to reduce the seismic response of structures.
Analytical studies are performed to determine the optimal utilization of the resettable devices in a twelve-storey reinforced concrete building. The seismic performance of the structure is discussed in relation to the number and distribution of the devices. Inelastic time-history analyses are carried out to assess the effectiveness of the devices to reduce the seismic response of the building. The impact of various tendon arrangements and different control laws on the earthquake response is investigated. Relevant issues for the implementation of the resettable devices in actual building systems are identified.
Finally, a new measurement concept based on the use of the fibre-optic gyroscope is proposed to measure rotation rates, rotations, displacements and inter-storey drifts of civil engineering structures. FOGs are compact, easy to install and, unlike conventional linear potentiometers, do not require a fixed reference frame to operate. Measurements recorded during the seismic testing of the one-fifth scale structure and displacement measurements at the Sky Tower in Auckland validate the suitability of the FOGs for applications in civil engineering.
|
28 |
Passive and Semi-Active Tuned Mass Damper Building Systems.Chey, Min Ho January 2007 (has links)
This thesis explores next generation passive and semi-active tuned mass damper (PTMD and SATMD) building systems for reducing the seismic response of tall structures and mitigating damage. The proposed structural configuration separates the upper storey(s) of a structure to act as the 'tuned' mass, either passively or semi-actively. In the view point of traditional TMD system theory, this alternative approach avoids adding excessive redundant mass that is rarely used. In particular, it is proposed to replace the passive spring damper system with a semi-active resetable device based system (SATMD). This semi-active approach uses feedback control to alter or manipulate the reaction forces, effectively re-tuning the system depending on the structural response. In this trade-off parametric study, the efficacy of spreading stiffness between resetable devices and rubber bearings is illustrated. Spectral analysis of simplified 2-DOF model explores the efficacy of these modified structural control systems and the general validity of the optimal derived parameters is demonstrated. The end result of the spectral analysis is an optimally-based initial design approach that fits into accepted design methods. Realistic suites of earthquake ground motion records, representing seismic excitations of specific return period probability, are utilised, with lognormal statistical analysis used to represent the response distribution. This probabilistic approach avoids bias toward any particular type of ground motion or frequency content. Statistical analysis of the performance over these suites thus better indicates the true overall efficacy of the PTMD and SATMD building systems considered. Several cases of the segregated multi-storey TMD building structures utilising passive devices (PTMD) and semi-active resetable devices (SATMD) are described and analysed. The SATMD building systems show significant promise for applications of structural control, particularly for cases where extra storeys might be added during retrofit, redevelopment or upgrade. The SATMD approach offers advantages over PTMD building systems in the consistent response reductions seen over a broad range of structural natural frequencies. Using an array of performance metrics the overall structural performance is examined without the typically narrow focus found in other studies. Performance comparisons are based on statistically calculated storey/structural hysteretic energy and storey/structural damage demands, as well as conventional structural response performance indices. Overall, this research presents a methodology for designing SATMD building systems, highlighting the adaptable structural configuration and the performance obtained. Thus, there is good potential for SATMD building systems, especially in retrofit where lack of space constrains some future urban development to expand upward. Finally, the approach presented offers an insight into how rethinking typical solutions with new technology can offer dramatic improvements that might not otherwise be expected or obtainable.
|
29 |
Novel Semi-Active Suspension with Tunable Stiffness and Damping CharacteristicsWong, Adrian Louis Kuo-Tian January 2012 (has links)
For the past several decades there have been many attempts to improve suspension performance due to its importance within vehicle dynamics. The suspension system main functions are to connect the chassis to the ground, and to isolate the chassis from the ground. To improve upon these two functions, large amounts of effort are focused on two elements that form the building blocks of the suspension system, stiffness and damping. With the advent of new technologies, such as variable dampers, and powerful microprocessors and sensors, suspension performance can be enhanced beyond the traditional capabilities of a passive suspension system. Recently, Yin et al. [1, 2] have developed a novel dual chamber pneumatic spring that can provide tunable stiffness characteristics, which is rare compared to the sea of tunable dampers. The purpose of this thesis is to develop a controller to take advantage of the novel pneumatic spring’s functionality with a tunable damper to improve vehicle dynamic performance.
Since the pneumatic spring is a slow-acting element (i.e. low bandwidth), the typical control logic for semi-active suspension systems are not practical for this framework. Most semi-active controllers assume the use of fast-acting (i.e. high bandwidth) variable dampers within the suspension design. In this case, a lookup table controller is used to manage the stiffness and damping properties for a wide range of operating conditions.
To determine the optimum stiffness and damping properties, optimization is employed. Four objective functions are used to quantify vehicle performance; ride comfort, rattle space (i.e. suspension deflection), handling (i.e. tire deflection), and undamped sprung mass natural frequency. The goal is to minimize the first three objectives, while maximizing the latter to avoid motion sickness starting from 1Hz and downward. However, these goals cannot be attained simultaneously, necessitating compromises between them. Using the optimization strength of genetic algorithms, a Pareto optima set can be generated to determine the compromises between objective functions that have been normalized. Using a trade-off study, the stiffness and damping properties can be selected from the Pareto optima set for suitability within an operating condition of the control logic.
When implementing the lookup table controller, a practical method is employed to recognize the road profile as there is no direct method to determine road profile. To determine the road profile for the lookup table controller, the unsprung mass RMS acceleration and suspension state are utilized. To alleviate the inherent flip-flopping drawback of lookup table controllers, a temporal deadband is employed to eliminate the flip-flopping of the lookup table controller.
Results from the semi-active suspension with tunable stiffness and damping show that vehicle performance, depending on road roughness and vehicle speed, can improve up to 18% over passive suspension systems. Since the controller does not constantly adjust the damping properties, cost and reliability may increase over traditional semi-active suspension systems. The flip-flopping drawback of lookup table controllers has been reduced through the use of a temporal deadband, however further enhancement is required to eliminate flip-flopping within the control logic. Looking forward, the novel semi-active suspension has great potential to improve vehicle dynamic performance especially for heavy vehicles that have large sprung mass variation, but to increase robustness the following should be considered: better road profile recognition, the elimination of flip-flopping between suspension states, and using state equations model of the pneumatic spring within the vehicle model for optimization and evaluation.
|
30 |
Novel Semi-Active Suspension with Tunable Stiffness and Damping CharacteristicsWong, Adrian Louis Kuo-Tian January 2012 (has links)
For the past several decades there have been many attempts to improve suspension performance due to its importance within vehicle dynamics. The suspension system main functions are to connect the chassis to the ground, and to isolate the chassis from the ground. To improve upon these two functions, large amounts of effort are focused on two elements that form the building blocks of the suspension system, stiffness and damping. With the advent of new technologies, such as variable dampers, and powerful microprocessors and sensors, suspension performance can be enhanced beyond the traditional capabilities of a passive suspension system. Recently, Yin et al. [1, 2] have developed a novel dual chamber pneumatic spring that can provide tunable stiffness characteristics, which is rare compared to the sea of tunable dampers. The purpose of this thesis is to develop a controller to take advantage of the novel pneumatic spring’s functionality with a tunable damper to improve vehicle dynamic performance.
Since the pneumatic spring is a slow-acting element (i.e. low bandwidth), the typical control logic for semi-active suspension systems are not practical for this framework. Most semi-active controllers assume the use of fast-acting (i.e. high bandwidth) variable dampers within the suspension design. In this case, a lookup table controller is used to manage the stiffness and damping properties for a wide range of operating conditions.
To determine the optimum stiffness and damping properties, optimization is employed. Four objective functions are used to quantify vehicle performance; ride comfort, rattle space (i.e. suspension deflection), handling (i.e. tire deflection), and undamped sprung mass natural frequency. The goal is to minimize the first three objectives, while maximizing the latter to avoid motion sickness starting from 1Hz and downward. However, these goals cannot be attained simultaneously, necessitating compromises between them. Using the optimization strength of genetic algorithms, a Pareto optima set can be generated to determine the compromises between objective functions that have been normalized. Using a trade-off study, the stiffness and damping properties can be selected from the Pareto optima set for suitability within an operating condition of the control logic.
When implementing the lookup table controller, a practical method is employed to recognize the road profile as there is no direct method to determine road profile. To determine the road profile for the lookup table controller, the unsprung mass RMS acceleration and suspension state are utilized. To alleviate the inherent flip-flopping drawback of lookup table controllers, a temporal deadband is employed to eliminate the flip-flopping of the lookup table controller.
Results from the semi-active suspension with tunable stiffness and damping show that vehicle performance, depending on road roughness and vehicle speed, can improve up to 18% over passive suspension systems. Since the controller does not constantly adjust the damping properties, cost and reliability may increase over traditional semi-active suspension systems. The flip-flopping drawback of lookup table controllers has been reduced through the use of a temporal deadband, however further enhancement is required to eliminate flip-flopping within the control logic. Looking forward, the novel semi-active suspension has great potential to improve vehicle dynamic performance especially for heavy vehicles that have large sprung mass variation, but to increase robustness the following should be considered: better road profile recognition, the elimination of flip-flopping between suspension states, and using state equations model of the pneumatic spring within the vehicle model for optimization and evaluation.
|
Page generated in 0.0505 seconds