• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 11
  • 11
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a smart fabric for orthopaedic applications

Garcia Garcia, Leonardo Azael January 2015 (has links)
Immobilisation has been one of the common forms of treatments for orthopaedic injuries and diseases. Immobilisation of injured limbs using dynamic splinting is routinely recommended by clinicians for fast healing as it promotes blood flow and provides the require stability. There are several dynamic splints available in the market that make use of different materials and mechanical elements. This research was set out to investigate the applicability of Magneto-Rheological(MR) fluids for the development of a smart fabric for orthopaedic splints. The fabric would be woven with hollow fibres containing MR fluid, which will change stiffness in an applied magnetic field. The concept was tested by measuring changes in the stiffness of silicone tubings in two different diameters filled with MR fluid, under different magnetic flux densities. The corresponding changes in stiffness of a preliminary fabric specimen built with woven tubings and cast liner was also investigated. The magnetic field was created after a set of detailed experimental and numerical analyses (Finite Element Method). It was found that although the electromagnets are much more versatile and easier to control for a required magnitude of magnetic flux density, they were found to be unsatisfactory due to their weight, bulk, and substantial requirement of batterie power. Permanent magnets offered a much better solution. After detailed preliminary analyses, an array of 21 neodymium magnets was chose for the experiments, which provided the required magnitude and uniformity of the magnetic field. The specimens were loaded in steps by small weights, and the resulting deflection was measured using an optical deformation analysis system. The equivalent Young’s modulus was found to increase from 16 MPa to 122 MPa under an average magnetic flux density of 0.0139 Tesla, which is an in- crease of 70%. A finite-element (FE) model of the single tubing test set up was developed and validated against the experimental results. The FE analysis was extended to the fabric specimens. The difference between the experimental and numerical results for the single tubing was as small as 2.5%, and 9.2% for the fabric. Furthermore, a preliminary numerical model and analysis of the hand was developed, which set the basis in the development of a further numerical analysis in the final development of the fabric. Upon the completion of the tests and simulation, it was concluded that a woven fabric made up of hollow fibres containing MR fluid can be an effective dynamic splint over a small area such as the wrist. However a fully functional product would require further research.
2

Design and Characterization of Tunable Magneto-Rheological Fluid-Elastic Mounts

Southern, Brian Mitchell 05 June 2008 (has links)
This study of adaptable vibration isolating mounts sets out to capture the uniqueness of magnetorheological (MR) fluid's variable viscosity rate, and to physically alter the damping and stiffness when used inside an elastomeric mount. Apparent variable viscosity or rheology of the MR fluid has dependency on the application of a magnetic field. Therefore, this study also intends to look at the design of a compact magnetic field generator which magnetizes the MR fluid to activate different stiffness and damping levels within the isolator to create an adaptable and tunable feature. To achieve this adaptable isolator mount, a mold will be fabricated to construct the mounts. A process will then be devised to manufacture the mounts and place MR fluid inside the mount for later compatibility with the magnetic field generator. This process will then produce an MR fluid-elastic mount. Additionally for comparative purposes, passive mounts will be manufactured with a soft rubber casing and an assortment of metal and non-metal inserts. Next, the design of the magnetic field generator will be modeled using FEA magnetic software and then constructed. Stiffness or force/displacement measurements will then be analyzed from testing the isolator mount and magnetic field generator on a state-of-the-art vibration dynamometer. To vary the magnetic flux through the mount, an electro-magnet is used. To analyze the results, a frequency method of the stiffness will be used to show the isolators adaptation to various increments of magnetic flux over the sinusoidal input displacement frequencies. This frequency response of the stiffness will then be converted into a modeling technique to capture the essence of the dynamics from activating the MR fluid within the isolator mount. With this methodology for studying the adaptability of an MR fluid-elastic mount, the stiffness increases are dependent on the level of magnetic field intensity provided from the supplied electro-magnet. When the electro-magnet current supply is increased from 0.0 to 2.0 Amps, the mount stiffness magnitude increase is 78% in one of the MR fluid-elastic mounts. Through comparison, this MR fluid-elastic mount at off-state with zero magnetic field is similar to a mount made of solid rubber with a hardness of 30 Shore A. With 2 Amps of current, however, the MR fluid-elastic mount has a higher stiffness magnitude than a rubber mount and resembles a rubber casing with a steel insert. Moreover, when the current in the electro-magnet is increased from 0.0 to 2.0 Amps the equivalent damping coefficient in a MR fluid-elastic mount increases over 500% of the value at 0 Amps at low frequency. Through damping comparisons, the MR fluid-elastic mount with no current is similar to that of a mount made of solid rubber with a hardness of 30 Shore A. At full current in the electromagnet, however, the damping in the MR fluid-elastic mount is greater than any of the comparative mounts in this study. Therefore, the results show that the MR fluid-elastic mount can provide a wide range of stiffness and damping variation for real-time embedded applications. Since many aerospace and automotive applications use passive isolators as engine mounts in secondary suspensions to reduce transmitted forces at cruise speed, the MR fluid-elastic mount could be substituted to reduce transmitted forces over a wider range of speeds. Additionally, this compact MR fluid-elastic mount system could be easily adapted to many packaging constraints in those applications. / Master of Science
3

Active and Semi-Active Bushing Design for Variable Displacement Engine

Arzanpour, Siamak January 2006 (has links)
The Variable Displacement Engine (VDE) is a new generation of engines that are designed to decrease the fuel consumption at the cruise speed of a vehicle. The isolation of the VDE's new vibration pattern is beyond the capabilities of conventional mounts and bushings. Consequently, in this thesis, novel active and semi-active solutions are proposed to develop various semi-active and active hydraulic bushing proof-of-concept systems that may solve the isolation problem in a VDE system. <br /><br /> The dynamic stiffness response, which is the transfer function that relates the engine displacement to the transmitted force, is normally used as the key design criterion for engine mounts and bushings. In this thesis, a linear mathematical model of a conventional hydraulic bushing is purposed. The validity of the mathematical model is confirmed by an experimental analysis, and the various parameters in the dynamic stiffness equation are evaluated. The experimental results indicate that the dynamic stiffness frequency response of the conventional hydraulic bushing has both soft and stiff regions. The soft region is limited to low frequencies. For the VDE isolation, the goal is to provide a soft bushing for a wider range of frequencies than a conventional bushing can accommodate. Addition of a short inertia track, similar to a decoupler used in conventional hydraulic engine mounts, may be used to extend the soft region of a conventional hydraulic bushing, and the experimental results validate it. <br /><br /> Since the short inertia track provides no additional damping, a supplementary Magnetorheological (MR) valve is also devised. The MR valve has the advantage to minimize the amount of MR fluid used, which significantly reduces the cost of the overall system. The novel valve allows the damping coefficient of the bushing assembly to be controlled by varying the electrical current input to a solenoid coil. A mathematical model is derived for the MR bushing, and is validated experimentally. <br /><br /> In addition, an active bushing to solve the VDE isolation problem is purposed in this thesis. In this bushing, a magnetic actuator, composed of a permanent magnet and a solenoid coil, is included in the active bushing. This active chamber affects the dynamic stiffness response of the bushing by altering the bushing's internal pressure. The nonlinear equation of motion of the permanent magnet is linearized and is incorporated into the new mathematical model of the system. The new purposed model for the active bushing is in good agreement with the experimental results. This active chamber is also proved capable of producing complex dynamic stiffness frequency response. <br /><br /> The conclusion is that the proposals in this thesis can contribute to the isolation of the vibration pattern, imposed by the application of a VDE system.
4

Active and Semi-Active Bushing Design for Variable Displacement Engine

Arzanpour, Siamak January 2006 (has links)
The Variable Displacement Engine (VDE) is a new generation of engines that are designed to decrease the fuel consumption at the cruise speed of a vehicle. The isolation of the VDE's new vibration pattern is beyond the capabilities of conventional mounts and bushings. Consequently, in this thesis, novel active and semi-active solutions are proposed to develop various semi-active and active hydraulic bushing proof-of-concept systems that may solve the isolation problem in a VDE system. <br /><br /> The dynamic stiffness response, which is the transfer function that relates the engine displacement to the transmitted force, is normally used as the key design criterion for engine mounts and bushings. In this thesis, a linear mathematical model of a conventional hydraulic bushing is purposed. The validity of the mathematical model is confirmed by an experimental analysis, and the various parameters in the dynamic stiffness equation are evaluated. The experimental results indicate that the dynamic stiffness frequency response of the conventional hydraulic bushing has both soft and stiff regions. The soft region is limited to low frequencies. For the VDE isolation, the goal is to provide a soft bushing for a wider range of frequencies than a conventional bushing can accommodate. Addition of a short inertia track, similar to a decoupler used in conventional hydraulic engine mounts, may be used to extend the soft region of a conventional hydraulic bushing, and the experimental results validate it. <br /><br /> Since the short inertia track provides no additional damping, a supplementary Magnetorheological (MR) valve is also devised. The MR valve has the advantage to minimize the amount of MR fluid used, which significantly reduces the cost of the overall system. The novel valve allows the damping coefficient of the bushing assembly to be controlled by varying the electrical current input to a solenoid coil. A mathematical model is derived for the MR bushing, and is validated experimentally. <br /><br /> In addition, an active bushing to solve the VDE isolation problem is purposed in this thesis. In this bushing, a magnetic actuator, composed of a permanent magnet and a solenoid coil, is included in the active bushing. This active chamber affects the dynamic stiffness response of the bushing by altering the bushing's internal pressure. The nonlinear equation of motion of the permanent magnet is linearized and is incorporated into the new mathematical model of the system. The new purposed model for the active bushing is in good agreement with the experimental results. This active chamber is also proved capable of producing complex dynamic stiffness frequency response. <br /><br /> The conclusion is that the proposals in this thesis can contribute to the isolation of the vibration pattern, imposed by the application of a VDE system.
5

Tribologické charakteristiky chytrých kapalin / Tribological characteristics of smart fluids

Michalec, Michal January 2019 (has links)
The master's thesis deals with experimental study of tribological characteristics of smart fluids. Smart fluids are substances in liquid state reacting to the presence of magnetic or electric field by change in rheological properties. For possible application in devices using conventional lubricants is necessary to choose suitable smart fluid and study the influence of excitation on formation of lubricating layer, friction and wear. Comprehensive description of excitation influence is executed using three experimental devices and theoretical model for measurements parameters specification. Assessed are lubricant film thickness, friction coefficient and wear under smart fluid activation in non-conformal contact. Results show significant observable influence of smart fluids excitation on all assessed aspects. Understanding the mechanisms of smart fluids excitation can be a key step in development of intelligent devices with active external control of lubricant behaviour and character, that could lead to maintenance cost reduction and effectivity improvement.
6

Testování sportovního automobilového odpružení / Testing of automotive sport suspension

Čípek, Pavel January 2016 (has links)
The diploma thesis deals with testing of sports car suspension. The aim is the testing of fast magnetorheological damper in semiactive suspension that corresponds to quarter car model. The fast magnetorheological damper has a response time 2 ms. If the response time is short enough (order of units miliseconds) it is possible (based on earlier simulations) to achieve improvement of driving safety (better stability of force of tyre on roadway) and comfort (reduction of vibrations). The thesis proves this statement with series of experiments.
7

Characterizing the Behavior of Magnetorheological Fluids at High Velocities and High Shear Rates

Goncalves, Fernando D. 11 February 2005 (has links)
Magnetorheological (MR) fluids offer solutions to many engineering challenges. The success of MR fluid is apparent in many disciplines, ranging from the automotive and civil engineering communities to the biomedical engineering community. This well documented success of MR fluids continues to motivate current and future applications of MR fluid. One such application that has been considered recently is MR fluid devices for use in impact and other high velocity applications. In such applications, the fluid environment within the device may be well beyond the scope of our understanding for these fluids. To date, little has been done to explore the suitability of MR fluids in such high velocity and high shear applications. While future applications may expose the fluid to adverse flow conditions, we must also consider current and existing applications which expose the fluid to extreme flow environments. Consider, for example, an MR damper intended for automotive primary suspensions, in which shear rates may exceed 10^5 s^-1. Flow conditions within these dampers far exceed existing fluid behavior characterization. The aim of the current study is to identify the behavior of the fluid under these extreme operating conditions. Specifically, this study intends to identify the behavior of MR fluid subject to high rates of shear and high flow velocities. A high shear rheometer is built which allows for the high velocity testing of MR fluids. The rheometer is capable of fluid velocities ranging from 1 m/s to 37 m/s, with corresponding shear rates ranging from 0.14x10^5 s^-1 to 2.5x10^5 s^-1. Fluid behavior is characterized in both the off-state and the on-state. The off-state testing was conducted in order to identify the high shear viscosity of the fluid. Because the high shear behavior of MR fluid is largely governed by the behavior of the carrier fluid, the carrier fluid behavior was also identified at high shear. Experiments were conducted using the high shear rheometer and the MR fluid was shown to exhibit nearly Newtonian post-yield behavior. A slight thickening was observed for growing shear rates. This slight thickening can be attributed to the behavior of the carrier fluid, which exhibited considerable thickening at high shear. The purpose of the on-state testing was to characterize the MR effect at high flow velocities. As such, the MR fluid was run through the rheometer at various flow velocities and a number of magnetic field strengths. The term "dwell time" is introduced and defined as the amount of time the fluid spends in the presence of a magnetic field. Two active valve lengths were considered, which when coupled to the fluid velocities, generated dwell times ranging from 12 ms to 0.18 ms. The yield stress was found from the experimental measurements and the results indicate that the magnitude of the yield stress is sensitive to fluid dwell time. As fluid dwell times decrease, the yield stress developed in the fluid decreases. The results from the on-state testing clearly demonstrate a need to consider fluid dwell times in high velocity applications. Should the dwell time fall below the response time of the fluid, the yield stress developed in the fluid may only achieve a fraction of the expected value. These results imply that high velocity applications may be subject to diminished controllability for falling dwell times. Results from this study may serve to aid in the design of MR fluid devices intended for high velocity applications. Furthermore, the identified behavior may lead to further developments in MR fluid technology. In particular, the identified behavior may be used to develop or identify an MR fluid well suited for high velocity and high shear applications. / Ph. D.
8

Design and Development of a Squeeze-Mode Rheometer for Evaluating Magneto-Rheological Fluids

Cavey, Ryan Hale 05 November 2008 (has links)
This study aims to better understand the behavior of magnetorheological (MR) fluids operated in the non-conventional squeeze mode through the use of a custom designed rheometer. Squeeze mode is the least understood of the three operational modes of MR fluid and thus its potential has yet to be realized in practical applications. By identifying the behavior of MR fluid in this mode, the foundation for future development of MR technology will be laid. Using the limited amount of literature available on squeeze-mode operation in conjunction with conventional principles associated with MR technology, a custom rheometer was designed and fabricated. A detailed account of the design considerations and background information on the fundamentals incorporated into the design are provided. The squeeze-mode rheometer was used to evaluate a variety of MR fluids to observe trends that may exist across fluids. Specifically, fluids of different ferrous particle volume fractions were considered. Through testing, common trends in fluid stiffness were observed for multiple fluids tested with the squeeze-mode rheometer. When operated in squeeze mode, activated MR fluid has shown to provide substantial resistance to compressive loading, possibly making it attractive for low-displacement high-load systems. The primary observation from the tests is that the activated fluid's stiffness progressively increases over the duration of fluid operation. This phenomenon is due to severe carrier-fluid separation coupled with the formation of ferrous particle aggregate clumps in the fluid. This effect is further explored in this research. / Master of Science
9

Control of a Uni-Axial Magnetorheological Vibration Isolator

Wang, Shuo 10 June 2011 (has links)
No description available.
10

Zlepšení sedimentační stability MR kapalin použitím bentonitových jílů / Enhancing of sedimentation stability using bentonit based clays

Michal, Lukáš January 2021 (has links)
The diploma thesis is focused on the issue of sedimentation stability of magnetorheological fluids, whis represents one of the most important characteristics determining the reliability of these fluids. Higher sedimentation stability can by achieved in several ways. Methods that are further examined in the thesis include particle polymerization and the addition of clay mineral additives. Both achieve positive results by schowing increased sedimentation stability. However, in the case of additives, the effect is much higher. In particular, the CLAYTONE 40 additive achieves a lower particle sedimentation rate while maintaining the same viscosity as the commercial LORD-122ED. The results provide significant knowledge in the field and can bring magnetorheological fluids closer to wider commercial use.

Page generated in 0.0266 seconds