• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Global embeddings of pseudo-Riemannian spaces.

Moodley, Jothi. January 2007 (has links)
Motivated by various higher dimensional theories in high-energy-physics and cosmology, we consider the local and global isometric embeddings of pseudo-Riemannian manifolds into manifolds of higher dimensions. We provide the necessary background in general relativity, topology and differential geometry, and present the technique for local isometric embeddings. Since an understanding of the local results is key to the development of global embeddings, we review some local existence theorems for general pseudo-Riemannian embedding spaces. In order to gain insight we recapitulate the formalism required to embed static spherically symmetric space-times into fivedimensional Einstein spaces, and explicitly treat some special cases, obtaining local and isometric embeddings for the Reissner-Nordstr¨om space-time, as well as the null geometry of the global monopole metric. We also comment on existence theorems for Euclidean embedding spaces. In a recent result, it is claimed (Katzourakis 2005a) that any analytic n-dimensional space M may be globally embedded into an Einstein space M × F (F an analytic real-valued one-dimensional field). As a corollary, it is claimed that all product spaces are Einsteinian. We demonstrate that this construction for the embedding space is in fact limited to particular types of embedded spaces. We analyze this particular construction for global embeddings into Einstein spaces, uncovering a crucial misunderstanding with regard to the form of the local embedding. We elucidate the impact of this misapprehension on the subsequent proof, and amend the given construction so that it applies to all embedded spaces as well as to embedding spaces of arbitrary curvature. This study is presented as new theorems. / Thesis (M.Sc.)-University of KwaZulu-Natal, Westville, 2007.
2

The Einstein Field Equations : on semi-Riemannian manifolds, and the Schwarzschild solution

Leijon, Rasmus January 2012 (has links)
Semi-Riemannian manifolds is a subject popular in physics, with applications particularly to modern gravitational theory and electrodynamics. Semi-Riemannian geometry is a branch of differential geometry, similar to Riemannian geometry. In fact, Riemannian geometry is a special case of semi-Riemannian geometry where the scalar product of nonzero vectors is only allowed to be positive. This essay approaches the subject from a mathematical perspective, proving some of the main theorems of semi-Riemannian geometry such as the existence and uniqueness of the covariant derivative of Levi-Civita connection, and some properties of the curvature tensor. Finally, this essay aims to deal with the physical applications of semi-Riemannian geometry. In it, two key theorems are proven - the equivalenceof the Einstein field equations, the foundation of modern gravitational physics, and the Schwarzschild solution to the Einstein field equations. Examples of applications of these theorems are presented.
3

Generic properties of semi-Riemannian geodesic flows / Propriedades genéricas de fluxos geodésicos semi-Riemannianos

Bettiol, Renato Ghini 24 June 2010 (has links)
Let M be a possibly non compact smooth manifold. We study genericity in the C^k topology (3<=k<=+infty) of nondegeneracy properties of semi-Riemannian geodesic flows on M. Namely, we prove a new version of the Bumpy Metric Theorem for a such M and also genericity of metrics that do not possess any degenerate geodesics satisfying suitable endpoints conditions. This extends results of Biliotti, Javaloyes and Piccione for geodesics with fixed endpoints to the case where endpoints lie on a compact submanifold P of MxM that satisfies an admissibility condition. Immediate consequences are generic non conjugacy between two points and non focality between a point and a submanifold (or also between two submanifolds). / Seja M uma variedade suave possivelmente não compacta. Estuda-se a genericidade na topologia C^k (3<=k<=+infty) de propriedades de não degenerescência de fluxos geodésicos semi-Riemannianos em M. A saber, provase uma nova versão do Teorema de Métricas Bumpy para uma tal M e também a genericidade de métricas que não possuem geodésicas degeneradas cujos pontos finais satisfazem certas condições. Isso estende resultados anteriores de Biliotti, Javaloyes and Piccione para geodésicas com extremos fixos para o caso onde os extremos variam em uma subvariedade compacta P de M ×M que satisfaz uma condição de admissibilidade. Consequências imediatas são genericidade de não conjugação entre dois pontos e não focalidade entre um ponto e uma subvariedade (ou também entre duas subvariedades).
4

Structural Results on Optimal Transportation Plans

Pass, Brendan 11 January 2012 (has links)
In this thesis we prove several results on the structure of solutions to optimal transportation problems. The second chapter represents joint work with Robert McCann and Micah Warren; the main result is that, under a non-degeneracy condition on the cost function, the optimal is concentrated on a $n$-dimensional Lipschitz submanifold of the product space. As a consequence, we provide a simple, new proof that the optimal map satisfies a Jacobian equation almost everywhere. In the third chapter, we prove an analogous result for the multi-marginal optimal transportation problem; in this context, the dimension of the support of the solution depends on the signatures of a $2^{m-1}$ vertex convex polytope of semi-Riemannian metrics on the product space, induce by the cost function. In the fourth chapter, we identify sufficient conditions under which the solution to the multi-marginal problem is concentrated on the graph of a function over one of the marginals. In the fifth chapter, we investigate the regularity of the optimal map when the dimensions of the two spaces fail to coincide. We prove that a regularity theory can be developed only for very special cost functions, in which case a quotient construction can be used to reduce the problem to an optimal transport problem between spaces of equal dimension. The final chapter applies the results of chapter 5 to the principal-agent problem in mathematical economics when the space of types and the space of available goods differ. When the dimension of the space of types exceeds the dimension of the space of goods, we show if the problem can be formulated as a maximization over a convex set, a quotient procedure can reduce the problem to one where the two dimensions coincide. Analogous conditions are investigated when the dimension of the space of goods exceeds that of the space of types.
5

Structural Results on Optimal Transportation Plans

Pass, Brendan 11 January 2012 (has links)
In this thesis we prove several results on the structure of solutions to optimal transportation problems. The second chapter represents joint work with Robert McCann and Micah Warren; the main result is that, under a non-degeneracy condition on the cost function, the optimal is concentrated on a $n$-dimensional Lipschitz submanifold of the product space. As a consequence, we provide a simple, new proof that the optimal map satisfies a Jacobian equation almost everywhere. In the third chapter, we prove an analogous result for the multi-marginal optimal transportation problem; in this context, the dimension of the support of the solution depends on the signatures of a $2^{m-1}$ vertex convex polytope of semi-Riemannian metrics on the product space, induce by the cost function. In the fourth chapter, we identify sufficient conditions under which the solution to the multi-marginal problem is concentrated on the graph of a function over one of the marginals. In the fifth chapter, we investigate the regularity of the optimal map when the dimensions of the two spaces fail to coincide. We prove that a regularity theory can be developed only for very special cost functions, in which case a quotient construction can be used to reduce the problem to an optimal transport problem between spaces of equal dimension. The final chapter applies the results of chapter 5 to the principal-agent problem in mathematical economics when the space of types and the space of available goods differ. When the dimension of the space of types exceeds the dimension of the space of goods, we show if the problem can be formulated as a maximization over a convex set, a quotient procedure can reduce the problem to one where the two dimensions coincide. Analogous conditions are investigated when the dimension of the space of goods exceeds that of the space of types.
6

Generic properties of semi-Riemannian geodesic flows / Propriedades genéricas de fluxos geodésicos semi-Riemannianos

Renato Ghini Bettiol 24 June 2010 (has links)
Let M be a possibly non compact smooth manifold. We study genericity in the C^k topology (3<=k<=+infty) of nondegeneracy properties of semi-Riemannian geodesic flows on M. Namely, we prove a new version of the Bumpy Metric Theorem for a such M and also genericity of metrics that do not possess any degenerate geodesics satisfying suitable endpoints conditions. This extends results of Biliotti, Javaloyes and Piccione for geodesics with fixed endpoints to the case where endpoints lie on a compact submanifold P of MxM that satisfies an admissibility condition. Immediate consequences are generic non conjugacy between two points and non focality between a point and a submanifold (or also between two submanifolds). / Seja M uma variedade suave possivelmente não compacta. Estuda-se a genericidade na topologia C^k (3<=k<=+infty) de propriedades de não degenerescência de fluxos geodésicos semi-Riemannianos em M. A saber, provase uma nova versão do Teorema de Métricas Bumpy para uma tal M e também a genericidade de métricas que não possuem geodésicas degeneradas cujos pontos finais satisfazem certas condições. Isso estende resultados anteriores de Biliotti, Javaloyes and Piccione para geodésicas com extremos fixos para o caso onde os extremos variam em uma subvariedade compacta P de M ×M que satisfaz uma condição de admissibilidade. Consequências imediatas são genericidade de não conjugação entre dois pontos e não focalidade entre um ponto e uma subvariedade (ou também entre duas subvariedades).
7

Semi-riemannian noncommutative geometry, gauge theory, and the standard model of particle physics / Géométrie non-commutative semi-riemannienne, théorie de jauge, et le modèle standard de la physique des particules

Bizi, Nadir 14 September 2018 (has links)
Dans cette thèse, nous nous intéressons à la géométrie non-commutative - aux triplets spectraux en particulier - comme moyen d'unifier gravitation et modèle standard de la physique des particules. Des triplets spectraux permettant une telle unification on déjà été construits dans le cas des variétés riemanniennes. Il s'agit donc ici de généraliser au cas des variétés semi-riemanniennes, et d'appliquer ensuite au cas lorentzien, qui est d'une importance particulière en physique. C'est ce que nous faisons dans la première partie de la thèse, ou le passage du cas riemannien au cas semi-riemannien nous oblige à nous intéresser à des espaces vectoriels de signatures indéfinies (et non définies positives), dits espaces de Krein. Ceci est une conséquence de notre étude des algèbres de Clifford indéfinies et des structures Spin sur variétés semi-riemanniennes. Nous généralisons ensuite les triplets spectraux en triplets dits indéfinis en conséquence de cela. Dans la deuxième partie de la thèse, nous appliquons le formalisme des formes différentielles non-commutatives à nos triplets indéfinis pour formuler des théories de jauge non-commutatives sur espace-temps lorentzien. Nous montrons ensuite comment obtenir le modèle standard. / The subject of this thesis is noncommutative geometry - more specifically spectral triples - and how it can be used to unify General Relativity with the Standard Model of particle physics. This unification has already been achieved with spectral triples for Riemannian manifolds. The main concern of this thesis is to generalize this construction to semi-Riemannian manifolds generally, and Lorentzian manifolds in particular. The first half of this thesis will thus be dedicated to the transition from Riemannian to semi-Riemannian manifolds. This entails a study of Clifford algebras for indefinite vector spaces and Spin structures on semi-Riemannian manifolds. An important consequence of this is the introduction of complex vector spaces of indefinite signature. These are the so-called Krein spaces, which will enable us to generalize spectral triples to indefinite spectral triples. In the second half of this thesis, we will apply the formalism of noncommutative differential forms to indefinite spectral triples to construct noncommutative gauge theories on Lorentzian spacetimes. We will then demonstrate how to recover the Standard Model.
8

Difeomorfismos conformes que preservam o tensor de Ricci em variedades semi-riemannianas / Conformal diffeomorphism that preserving the Ricci tensor in semi-riemannian manifolds

CARVALHO, Fernando Soares de 28 January 2011 (has links)
Made available in DSpace on 2014-07-29T16:02:18Z (GMT). No. of bitstreams: 1 Dissertacao Fernando Soares de Carvalho.pdf: 3468325 bytes, checksum: 30df6cf936483cf5aec035b1bdd9d208 (MD5) Previous issue date: 2011-01-28 / NOTE: Because some programs do not copy symbols, formulas, etc... to view the summary and the contents of the file, click on PDF - dissertation on the bottom of the screen. / OBS: Como programas não copiam certos símbolos, fórmulas... etc, para visualizar o resumo e o todo o arquivo, click em PDF - dissertação na parte de baixo da tela.

Page generated in 0.054 seconds