Spelling suggestions: "subject:"semiparametric bayesian inference"" "subject:"semiparametric eayesian inference""
1 |
Modelos bayesianos semi-paramétricos para dados binários / Bayesian semi-parametric models for binary dataDiniz, Márcio Augusto 11 June 2015 (has links)
Este trabalho propõe modelos Bayesiano semi-paramétricos para dados binários. O primeiro modelo é uma mistura em escala que permite lidar com discrepâncias relacionadas a curtose do modelo Logístico. É uma extensão relevante a partir do que já foi proposto por Basu e Mukhopadhyay (2000) ao possibilitar a interpretação da distribuição a priori dos parâmetros através de razões de chances. O segundo modelo usufrui da mistura em escala em conjunto com a transformação proposta por \\Yeo e Johnson (2000) possibilitando que a curtose assim como a assimetria sejam ajustadas e um parâmetro informativo de assimetria seja estimado. Esta transformação é muito mais apropriada para lidar com valores negativos do que a transformação de Box e Cox (1964) utilizada por Guerrero e Johnson (1982) e é mais simples do que o modelo proposto por Stukel (1988). Por fim, o terceiro modelo é o mais geral entre todos e consiste em uma mistura de posição e escala tal que possa descrever curtose, assimetria e também bimodalidade. O modelo proposto por Newton et al. (1996), embora, seja bastante geral, não permite uma interpretação palpável da distribuição a priori para os pesquisadores da área aplicada. A avaliação dos modelos é realizada através de medidas de distância de probabilidade Cramér-von Mises, Kolmogorov-Smirnov e Anderson-Darling e também pelas Ordenadas Preditivas Condicionais. / This work proposes semi-parametric Bayesian models for binary data. The first model is a scale mixture that allows handling discrepancies related to kurtosis of Logistic model. It is a more interesting extension than has been proposed by Basu e Mukhopadyay (1998) because this model allows the interpretation of the prior distribution of parameters using odds ratios. The second model enjoys the scale mixture together with the scale transformation proposed by Yeo and Johnson (2000) modeling the kurtosis and the asymmetry such that a parameter of asymmetry is estimated. This transformation is more appropriate to deal with negative values than the transformation of Box e Cox (1964) used by Guerrero e Johnson (1982) and simpler than the model proposed by Stukel (1988). Finally, the third model is the most general among all and consists of a location-scale mixture that can describe kurtosis and skewness also bimodality. The model proposed by Newton et al (1996), although general, does not allow a tangible interpretation of the a priori distribution for reseachers of applied area. The evaluation of the models is performed through distance measurements of distribution of probabilities Cramer-von Mises Kolmogorov-Smirnov and Anderson-Darling and also the Conditional Predictive sorted.
|
2 |
Modelos bayesianos semi-paramétricos para dados binários / Bayesian semi-parametric models for binary dataMárcio Augusto Diniz 11 June 2015 (has links)
Este trabalho propõe modelos Bayesiano semi-paramétricos para dados binários. O primeiro modelo é uma mistura em escala que permite lidar com discrepâncias relacionadas a curtose do modelo Logístico. É uma extensão relevante a partir do que já foi proposto por Basu e Mukhopadhyay (2000) ao possibilitar a interpretação da distribuição a priori dos parâmetros através de razões de chances. O segundo modelo usufrui da mistura em escala em conjunto com a transformação proposta por \\Yeo e Johnson (2000) possibilitando que a curtose assim como a assimetria sejam ajustadas e um parâmetro informativo de assimetria seja estimado. Esta transformação é muito mais apropriada para lidar com valores negativos do que a transformação de Box e Cox (1964) utilizada por Guerrero e Johnson (1982) e é mais simples do que o modelo proposto por Stukel (1988). Por fim, o terceiro modelo é o mais geral entre todos e consiste em uma mistura de posição e escala tal que possa descrever curtose, assimetria e também bimodalidade. O modelo proposto por Newton et al. (1996), embora, seja bastante geral, não permite uma interpretação palpável da distribuição a priori para os pesquisadores da área aplicada. A avaliação dos modelos é realizada através de medidas de distância de probabilidade Cramér-von Mises, Kolmogorov-Smirnov e Anderson-Darling e também pelas Ordenadas Preditivas Condicionais. / This work proposes semi-parametric Bayesian models for binary data. The first model is a scale mixture that allows handling discrepancies related to kurtosis of Logistic model. It is a more interesting extension than has been proposed by Basu e Mukhopadyay (1998) because this model allows the interpretation of the prior distribution of parameters using odds ratios. The second model enjoys the scale mixture together with the scale transformation proposed by Yeo and Johnson (2000) modeling the kurtosis and the asymmetry such that a parameter of asymmetry is estimated. This transformation is more appropriate to deal with negative values than the transformation of Box e Cox (1964) used by Guerrero e Johnson (1982) and simpler than the model proposed by Stukel (1988). Finally, the third model is the most general among all and consists of a location-scale mixture that can describe kurtosis and skewness also bimodality. The model proposed by Newton et al (1996), although general, does not allow a tangible interpretation of the a priori distribution for reseachers of applied area. The evaluation of the models is performed through distance measurements of distribution of probabilities Cramer-von Mises Kolmogorov-Smirnov and Anderson-Darling and also the Conditional Predictive sorted.
|
3 |
Semi-parametric Bayesian Inference of Accelerated Life Test Using Dirichlet Process Mixture ModelLiu, Xi January 2015 (has links)
No description available.
|
Page generated in 0.1049 seconds