• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Représentation de la réponse fonctionnelle dans un modèle prédateur-proie : du chémostat à l'écosystème

Cordoleani, Flora 05 December 2011 (has links)
Une des grandes problématiques en écologie est d’identifier les liens qui existent entre ce qui se passe au niveau de la physiologie et du comportement des individus et les propriétés émergentes qui apparaissent au niveau de la population et des écosystèmes dans leur globalité.Dans cette thèse, nous avons abordé cette problématique à travers la modélisation du phénomène de prédation, en nous intéressant plus particulièrement à la représentation mathématique de la réponse fonctionnelle. Cette fonction représente la quantité de proies consommées par prédateur et par unité de temps. Elle synthétiseau niveau de la population un ensemble de processus survenant à différentes échelles d’organisation. La modélisation du phénomène de prédation rencontre diverses limitations liées à la complexité de ce processus biologique, et il existe donc une forte incertitude sur la nature de la réponse fonctionnelle à utiliser.A travers l’étude d’un modèle prédateur-proie en chemostat d’une part, et l’utilisation de méthodes de changement d’échelle sur un modèle prédateur-proie en patchs d’autre part, nous avons cherché à déterminer les sources de variations dans la représentation de cette réponse.Tout d’abord, nous avons mis en évidence l’influence de la variabilité des données sur la paramétrisation de la réponse fonctionnelle ainsi que sur la robustesse des sorties du modèle. Une étude de sensibilité a également permis de montrer la forte sensibilité structurelle du modèle face à cette formulation, qui peut-être plus importante que face à des changements de paramètres.De plus, il apparait que la représentation mathématique de la réponse fonctionnelle dépend fortement de l’échelle d’observation considérée. En effet, la nature de la réponse peut être modifiée lorsque l’on passe de l’échelle d’une population à celle de la communauté. / One of the major issues in ecology is to identify the links between what happens in terms of physiology and behavior of individuals and the emergent properties that appear at the population and ecosystems level. In this thesis, we addressed this problem through modeling of the phenomenon of predation, especially by focusing on the mathematical functional response representation. This function represents the amount of prey consumed by predator per unit time. It synthesizes at the population level a set processes occurring at different scales of organization. Modeling of the phenomenon of predation encounters various limitations related to the complexity of this biological process, and there is, therefore, considerable uncertainty aboutthe nature of the functional response to use.Through the study of a predator-prey model in chemostat on the one hand, and use of scaling methods in a patches predator-prey model on the other hand, we seek to determine sources of variations in therepresentation of that response.First, we demonstrated the influence of data variability on the parameterization of the functional response as well as the robustness of the model outputs. A sensitivity study has also demonstrated the high structural sensitivity of the model to the formulation of this response, which may be more important than to parameterchanges.In addition, it appears that the mathematical representation of the functional response depends strongly on the scale of observation considered. The nature of the response can, indeed, be modified when changing the scale from the population to the community level.
2

Uncertainty in predictive ecology : consequence of choices in model construction

Aldebert, Clément 29 November 2016 (has links)
Les systèmes écologiques sont des systèmes complexes qui ne peuvent pas être d´écrits par un unique modèle mathématique. De nombreux modèles peuvent être construits pour un même système, selon les internets du modélisateur et ses choix dans la construction du modèle. Quel est l’impact de ces choix dans la construction du modèle sur les prédictions de la dynamique des systèmes écologiques et les informations qu’elles fournissent sur la résilience de ces systèmes est la question générale qui guide le travail présente dans cette thèse. Cette thèses focalise sur un choix entre formulations de modèle basées sur des mécanismes biologiques et qui décrivent les données empiriques avec la même efficacité. Ces modèles sont proches l’un de l’autre, donc on s’attendrait `a ce que leurs prédictions soient similaires. Cependant, nous montrons avec un exemple générique de modèle prédateur-proie que des formulations similaires du processus de prédation peuvent prédire des dynamiques qualitativement différentes en terme de: (i) nombre et type d'états stables, et (ii) réponse et résilience du système face à une perturbation extérieure. Ces différences dans les prédictions du modèle sont expliquées par une analyse mathématique détaillée du modèle prédateur-proie. Ensuite, ce modèle est étendu à des réseaux trophiques compos´es de dizaines d’espèces. La complexité de ces réseaux (nombre d'espèces et d’interactions) explique leur persistance, alors que leur dynamique temporelle est fortement affectée par la fonction utilisée pour modéliser la prédation. Des méthodes sont ´également proposées pour quantifier la sensibilités d’un modèle. Finalement, nous montrons que si un minimum de détails biologiques sont pris en compte, des modèles prédateurs-proies sont moins sensibles `a la formulation de la prédation. Ceci nous donne des pistes pour gérer les incertitudes dans la construction d’un modèle, qui sont intrinsèques à la complexité des systèmes naturels. / Ecological systems are complex systems which cannot be described by a single mathematical model. Multiple modelsof a same system can be built, depending on modeller’s interests and on its choices during model construction. Howfar these choices in model construction can affect the predicted dynamics of ecological systems and the informationthey provide on their resilience? is the general question that leads the research presented in this thesis. This thesisfocuses on a choice between model formulations that are based on biological mechanisms and describe empiricaldata with the same accuracy. These models are close to each other, so they are expected to predict similar systemdynamics. However, we show through a generic example of predator-prey model that similar formulations of thepredation process can predict qualitatively different system dynamics in term of: (i) number and type of stablestates, and (ii) system response to external disturbance and its potential for recovery. These differences in modelpredictions are explained by a detailed mathematical analysis of the predator-prey model. Next, this model isextended to complex food webs made of tens of species. The complexity of these networks (number of species andinteractions) drives their persistence, whereas their temporal dynamics is strongly affected by the function used tomodel predation. Methods to quantify model sensitivity are also proposed. Finally, we show that if a minimumlevel of biological details is included, predator-prey models are less sensitive to predation formulation. This providea clue to deal with uncertainties in model construction, which are intrinsic to the complexity of natural systems.

Page generated in 0.1062 seconds