Spelling suggestions: "subject:"ensitivity 2analysis"" "subject:"ensitivity 3analysis""
481 |
Modeling Of The Biomass Power Generation And Techno-Economic AnalysisMethuku, Shireesha 11 December 2009 (has links)
Biomass is one of the renewable energy sources being used widely for power generation. This research work includes developing a comprehensive model for a biomass based power generation system as well as analyzing the technical, economical, and environmental impacts. The research objectives include modeling of the system, stability studies, and sensitivity analysis using MATLAB/Simulink. A mathematical model for the gas turbine has been developed and successfully interconnected with the distribution network. Transient stability of the power system has been carried out for four bus and six bus test case systems. Maximum rotor speed deviation, oscillation duration, rotor angle, and mechanical power have been taken as the stability indicators to analyze the system characteristics. Additionally, the sensitivity of the system to the changes of gas turbine parameters has been investigated under balanced and unbalanced fault scenarios. The economical and environmental impacts of the biomass have been analyzed using HOMER software developed by the National Renewable Energy Laboratory (NREL). The net present cost of the four biomass resources namely agricultural resources, forest residues, animal waste, and energy crops were obtained and the comparison of the costs of the biomass fuels as well as the diesel have been carried out. To investigate the environmental impact, carbon emissions of the different biomass fuels have been explored using HOMER.
|
482 |
CAUSAL MEDIATION ANALYSIS FOR NON-LINEAR MODELSWang, Wei 26 June 2012 (has links)
No description available.
|
483 |
Verification and Validation of a Transient Heat Exchanger ModelCarper, Jayme Lee 01 September 2015 (has links)
No description available.
|
484 |
Statistical Methods for Functional Genomics Studies Using Observational DataLu, Rong 15 December 2016 (has links)
No description available.
|
485 |
Satellite Attitude Determination Using Laser Communication SystemsSabala, Ryan J. 25 September 2008 (has links)
No description available.
|
486 |
Modeling, Optimization and Estimation in Electric Arc Furnace (EAF) OperationGhobara, Emad Moustafa Yasser 10 1900 (has links)
<p>The electric arc furnace (EAF) is a highly energy intensive process used to convert scrap metal into molten steel. The aim of this research is to develop a dynamic model of an industrial EAF process, and investigate its application for optimal EAF operation. This work has three main contributions; the first contribution is developing a model largely based on MacRosty and Swartz (2005) to meet the operation of a new industrial partner (ArcelorMittal Contrecoeur Ouest, Quebec, Canada). The second contribution is carrying out sensitivity analyses to investigate the effect of the scrap components on the EAF process. Finally, the third contribution includes the development of a constrained multi-rate extended Kalman filter (EKF) to infer the states of the system from the measurements provided by the plant.</p> <p>A multi-zone model is developed and discussed in detail. Heat and mass transfer relationships are considered. Chemical equilibrium is assumed in two of the zones and calculated through the minimization of the Gibbs free energy. The most sensitive parameters are identified and estimated using plant measurements. The model is then validated against plant data and has shown a reasonable level of accuracy.</p> <p>Local differential sensitivity analysis is performed to investigate the effect of scrap components on the EAF operation. Iron was found to have the greatest effect amongst the components present. Then, the optimal operation of the furnace is determined through economic optimization. In this case, the trade-off between electrical and chemical energy is determined in order to maximize the profit. Different scenarios are considered that include price variation in electricity, methane and oxygen.</p> <p>A constrained multi-rate EKF is implemented in order to estimate the states of the system using plant measurements. The EKF showed high performance in tracking the true states of the process, even in the presence of a parametric plant-model mismatch.</p> / Master of Applied Science (MASc)
|
487 |
Cost Modeling Based on Support Vector Regression for Complex Products During the Early Design PhasesHuang, Guorong 04 September 2007 (has links)
The purpose of a cost model is to provide designers and decision-makers with accurate cost information to assess and compare multiple alternatives for obtaining the optimal solution and controlling cost. The cost models developed in the design phases are the most important and the most difficult to develop. Therefore it is necessary to identify appropriate cost drivers and employ appropriate modeling techniques to accurately estimate cost for directing designers. The objective of this study is to provide higher predictive accuracy of cost estimation for directing designer in the early design phases of complex products.
After a generic cost estimation model is presented and the existing methods for identification of cost drivers and different cost modeling techniques are reviewed, the dissertation first proposes new methodologies to identify and select the cost drivers: Causal-Associated (CA) method and Tabu-Stepwise selection approach. The CA method increases understanding and explanation of the cost analysis and helps avoid missing some cost drivers. The Tabu-Stepwise selection approach is used to select significant cost drivers and eliminate irrelevant cost drivers under nonlinear situation. A case study is created to illustrate their procedure and benefits. The test data show they can improve predictive capacity.
Second, this dissertation introduces Tabu-SVR, a nonparametric approach based on support vector regression (SVR) for cost estimation for complex products in the early design phases. Tabu-SVR determines the parameters of SVR via a tabu search algorithm improved by the author. For verification and validation of performance on Tabu-SVR, the five common basic cost characteristics are summarized: accumulation, linear function, power function, step function, and exponential function. Based on these five characteristics and the Flight Optimization Systems (FLOPS) cost module (engine part), seven test data sets are generated to test Tabu-SVR and are used to compare it with other traditional methods (parametric modeling, neural networking and case-based reasoning). The results show Tabu-SVR significantly improves the performance compared to SVR based on empirical study. The radial basis function (RBF) kernel, which is much more robust, often has better performance over linear and polynomial kernel functions. Compared with other traditional cost estimating approaches, Tabu-SVR with RBF kernel function has strong predicable capability and is able to capture nonlinearities and discontinuities along with interactions among cost drivers.
The third part of this dissertation focuses on semiparametric cost estimating approaches. Extensive studies are conducted on three semiparametric algorithms based on SVR. Three data sets are produced by combining the aforementioned five common basic cost characteristics. The experiments show Semiparametric Algorithm 1 is the best approach under most situations. It has better cost estimating accuracy over the pure nonparametric approach and the pure parametric approach. The model complexity influences the estimating accuracy for Semiparametric Algorithm 2 and Algorithm 3. If the inexact function forms are used as the parametric component of semiparametric algorithm, they often do not bring any improvement of cost estimating accuracy over the pure nonparametric approach and even worsen the performance.
The last part of this dissertation introduces two existing methods for sensitivity analysis to improve the explanation capability of the cost estimating approach based on SVR. These methods are able to show the contribution of cost drivers, to determine the effect of cost drivers, to establish the profiles of cost drivers, and to conduct monotonic analysis. They finally can help designers make trade-off study and answer “what-i” questions. / Ph. D.
|
488 |
Efficient Computational Tools for Variational Data Assimilation and Information Content EstimationSingh, Kumaresh 23 August 2010 (has links)
The overall goals of this dissertation are to advance the field of chemical data assimilation, and to develop efficient computational tools that allow the atmospheric science community benefit from state of the art assimilation methodologies. Data assimilation is the procedure to combine data from observations with model predictions to obtain a more accurate representation of the state of the atmosphere.
As models become more complex, determining the relationships between pollutants and their sources and sinks becomes computationally more challenging. The construction of an adjoint model ( capable of efficiently computing sensitivities of a few model outputs with respect to many input parameters ) is a difficult, labor intensive, and error prone task. This work develops adjoint systems for two of the most widely used chemical transport models: Harvard's GEOS-Chem global model and for Environmental Protection Agency's regional CMAQ regional air quality model. Both GEOS-Chem and CMAQ adjoint models are now used by the atmospheric science community to perform sensitivity analysis and data assimilation studies.
Despite the continuous increase in capabilities, models remain imperfect and models alone cannot provide accurate long term forecasts. Observations of the atmospheric composition are now routinely taken from sondes, ground stations, aircraft, and satellites, etc. This work develops three and four dimensional variational data assimilation capabilities for GEOS-Chem and CMAQ which allow to estimate chemical states that best fit the observed reality.
Most data assimilation systems to date use diagonal approximations of the background covariance matrix which ignore error correlations and may lead to inaccurate estimates. This dissertation develops computationally efficient representations of covariance matrices that allow to capture spatial error correlations in data assimilation.
Not all observations used in data assimilation are of equal importance. Erroneous and redundant observations not only affect the quality of an estimate but also add unnecessary computational expense to the assimilation system. This work proposes techniques to quantify the information content of observations used in assimilation; information-theoretic metrics are used.
The four dimensional variational approach to data assimilation provides accurate estimates but requires an adjoint construction, and uses considerable computational resources. This work studies versions of the four dimensional variational methods (Quasi 4D-Var) that use approximate gradients and are less expensive to develop and run.
Variational and Kalman filter approaches are both used in data assimilation, but their relative merits and disadvantages in the context of chemical data assimilation have not been assessed. This work provides a careful comparison on a chemical assimilation problem with real data sets. The assimilation experiments performed here demonstrate for the first time the benefit of using satellite data to improve estimates of tropospheric ozone. / Ph. D.
|
489 |
Modeling Host Immune Responses in Infectious DiseasesVerma, Meghna 17 December 2019 (has links)
Infectious diseases caused by bacteria, fungi, viruses and parasites have affected humans historically. Infectious diseases remain a major cause of premature death and a public health concern globally with increased mortality and significant economic burden. Unvaccinated individuals, people with suppressed and compromised immune systems are at higher risk of suffering from infectious diseases. In spite of significant advancements in infectious diseases research, the control or treatment process faces challenges. The mucosal immune system plays a crucial role in safeguarding the body from harmful pathogens, while being constantly exposed to the environment. To develop treatment options for infectious diseases, it is vital to understand the immune responses that occur during infection. The two infectious diseases presented here are: i) Helicobacter pylori infection and ii) human immunodeficiency (HIV) and human papillomavirus (HPV) co-infection. H pylori, is a bacterium that colonizes the stomach and causes gastric cancer in 1-2% but is beneficial for protection against allergies and gastroesophageal diseases. An estimated 85% of H pylori colonized individuals show no detrimental effects. HIV is a virus that causes AIDS, one of the deadliest and most persistent epidemics. HIV-infected patients are at an increased risk of co-infection with HPV, and report an increased incidence of oral cancer. The goal of this thesis is to elucidate the host immune responses in infectious diseases via the use of computational and mathematical models. First, the thesis reviews the need for computational and mathematical models to study the immune responses in the course of infectious diseases. Second, it presents a novel sensitivity analysis method that identifies important parameters in a hybrid (agent-based/equation-based) model of H. pylori infection. Third, it introduces a novel model representing the HIV/HPV coinfection and compares the simulation results with a clinical study. Fourth, it discusses the need of advanced modeling technologies to achieve a personalized systems wide approach and the challenges that can be encountered in the process. Taken together, the work in this dissertation presents modeling approaches that could lead to the identification of host immune factors in infectious diseases in a predictive and more resource-efficient manner. / Doctor of Philosophy / Infectious diseases caused by bacteria, fungi, viruses and parasites have affected humans historically. Infectious diseases remain a major cause of premature death and a public health concern globally with increased mortality and significant economic burden. These infections can occur either via air, travel to at-risk places, direct person-to-person contact with an infected individual or through water or fecal route. Unvaccinated individuals, individuals with suppressed and compromised immune system such as that in HIV carriers are at higher risk of getting infectious diseases. In spite of significant advancements in infectious diseases research, the control and treatment of these diseases faces numerous challenges. The mucosal immune system plays a crucial role in safeguarding the body from harmful pathogens, while being exposed to the environment, mainly food antigens. To develop treatment options for infectious diseases, it is vital to understand the immune responses that occur during infection. In this work, we focus on gut immune system that acts like an ecosystem comprising of trillions of interacting cells and molecules, including membars of the microbiome. The goal of this dissertation is to develop computational models that can simulate host immune responses in two infectious diseases- i) Helicobacter pylori infection and ii) human immunodeficiency virus (HIV)-human papilloma virus (HPV) co-infection. Firstly, it reviews the various mathematical techniques and systems biology based methods. Second, it introduces a "hybrid" model that combines different mathematical and statistical approaches to study H. pylori infection. Third, it highlights the development of a novel HIV/HPV coinfection model and compares the results from a clinical trial study. Fourth, it discusses the challenges that can be encountered in adapting machine learning based computational technologies. Taken together, the work in this dissertation presents modeling approaches that could lead to the identification of host immune factors in infectious diseases in a predictive and more resourceful way.
|
490 |
Robust State Estimation, Uncertainty Quantification, and Uncertainty Reduction with Applications to Wind EstimationGahan, Kenneth Christopher 17 July 2024 (has links)
Indirect wind estimation onboard unmanned aerial systems (UASs) can be accomplished using existing air vehicle sensors along with a dynamic model of the UAS augmented with additional wind-related states. It is often desired to extract a mean component of the wind the from frequency fluctuations (i.e. turbulence). Commonly, a variation of the KALMAN filter is used, with explicit or implicit assumptions about the nature of the random wind velocity. This dissertation presents an H-infinity (H∞) filtering approach to wind estimation which requires no assumptions about the statistics of the process or measurement noise. To specify the wind frequency content of interest a low-pass filter is incorporated. We develop the augmented UAS model in continuous-time, derive the H∞ filter, and introduce a KALMAN-BUCY filter for comparison. The filters are applied to data gathered during UAS flight tests and validated using a vaned air data unit onboard the aircraft. The H∞ filter provides quantitatively better estimates of the wind than the KALMAN-BUCY filter, with approximately 10-40% less root-mean-square (RMS) error in the majority of cases. It is also shown that incorporating DRYDEN turbulence does not improve the KALMAN-BUCY results. Additionally, this dissertation describes the theory and process for using generalized polynomial chaos (gPC) to re-cast the dynamics of a system with non-deterministic parameters as a deterministic system. The concepts are applied to the problem of wind estimation and characterizing the precision of wind estimates over time due to known parametric uncertainties. A novel truncation method, known as Sensitivity-Informed Variable Reduction (SIVR) was developed. In the multivariate case presented here, gPC and the SIVR-derived reduced gPC (gPCr) exhibit a computational advantage over Monte Carlo sampling-based methods for uncertainty quantification (UQ) and sensitivity analysis (SA), with time reductions of 38% and 98%, respectively. Lastly, while many estimation approaches achieve desirable accuracy under the assumption of known system parameters, reducing the effect of parametric uncertainty on wind estimate precision is desirable and has not been thoroughly investigated. This dissertation describes the theory and process for combining gPC and H-infinity (H∞) filtering. In the multivariate case presented, the gPC H∞ filter shows superiority over a nominal H∞ filter in terms of variance in estimates due to model parametric uncertainty. The error due to parametric uncertainty, as characterized by the variance in estimates from the mean, is reduced by as much as 63%. / Doctor of Philosophy / On unmanned aerial systems (UASs), determining wind conditions indirectly, without direct measurements, is possible by utilizing onboard sensors and computational models. Often, the goal is to isolate the average wind speed while ignoring turbulent fluctuations. Conventionally, this is achieved using a mathematical tool called the KALMAN filter, which relies on assumptions about the wind. This dissertation introduces a novel approach called H-infinity (H∞) filtering, which does not rely on such assumptions and includes an additional mechanism to focus on specific wind frequencies of interest. The effectiveness of this method is evaluated using real-world data from UAS flights, comparing it with the traditional KALMAN-BUCY filter. Results show that the H∞ filter provides significantly improved wind estimates, with approximately 10-40% less error in most cases. Furthermore, the dissertation addresses the challenge of dealing with uncertainty in wind estimation. It introduces another mathematical technique called generalized polynomial chaos (gPC), which is used to quantify and manage uncertainties within the UAS system and their impact on the indirect wind estimates. By applying gPC, the dissertation shows that the amount and sources of uncertainty can be determined more efficiently than by traditional methods (up to 98% faster). Lastly, this dissertation shows the use of gPC to provide more precise wind estimates. In experimental scenarios, employing gPC in conjunction with H∞ filtering demonstrates superior performance compared to using a standard H∞ filter alone, reducing errors caused by uncertainty by as much as 63%.
|
Page generated in 0.072 seconds